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1 Problem Description and Project Overview

1.1 Research Challenges Driving PCES Research

Large-scale, distributed real-time and embedded (DRE) systems are increasingly being used to control critical as-
pects of our nation’s infrastructure. For instance, DRE systems are now deployed in commercial air traffic control,
military systems, electrical power grid, and industrial process control, and medical imaging domains. Numerous
sectors of our government and economy depend on the stability, security, and robustness of these systems.

In the context of military systems, to accomplish its Joint 2010 and Joint 2020 Operation Visions the DoD is
seeking next generation combat vehicles and systems that provide:

• Revolutionary network-centric capabilities via collaboration and integration of hundreds of disparate extent
and to-be-developed systems.

• Enhanced automation and software control of ground, air, sea, and space assets with long-range precision
capabilities and assured, sustainable mission performance.

• Affordable support costs over a 20 to 40 year life-cycle that will include numerous technology refresh and
capability upgrades.

Highly-reliable DRE systems will be necessary to support emerging national infrastructure as summarized
above as well as the operational platforms required for achieving the DoD’s objectives of network-centric col-
laboration of systems/platforms, highly-autonomous systems, and distributed and evolving command-and-control
structures. It it tedious, error-prone, and costly to develop, optimize, validate, and deploy these types of DRE
systems using conventional software technologies. Once developed, such systems need to be evolvable so that
they can be easily refreshed with new technologies (e.g., incorporation of new banks of sensors with increased
precision, enhanced displays, mission control systems, etc.), and system components need to be transitioned for
use in successive similar but distinct platforms (e.g., the F/A-18A,B,C,D,E,F aircraft platforms) and missions (e.g.,
insertion of updated communication devices and protocols for joint operations with NATO allies).

Regardless of the particular domain, large-scale DRE systems share the following characteristics that make
them extraordinarily complex and very hard to design, implement, validate/certify, maintain, and evolve:

• Systems of systems.Large-scale DRE systems are often organized as “systems of systems” where func-
tional and QoS requirements must be satisfied using the capabilities of many subsystems that were often not
designed for integration or interoperability.

• Large-scale, complex, network-centric operations.The scope of large-scale DRE systems requires the appli-
cations they host to be distributed over networks, rather than being deployed as isolated stand-alone entities.
Moreover, the complexity of these systems makes it hard for integrators to have a complete and coherent
view of their requirements and implementations. Likewise, developers of particular modules who should be
insulated from other development aspects are often overwhelmed with artifacts that are irrelevant for their
specific tasks.

• Heterogeneous platforms.As they are distributed across networks, DRE systems are often deployed on a
variety of computing platforms that are interconnected by different types of networking technologies with
varying levels of QoS. This heterogeneity makes it hard for applications running on DRE systems to meet
their end-to-end functional and QoS requirements in a systematic and predictable manner.

• Incorporating legacy systems and technology refresh. Construction of systems of systems often entails in-
tegrating legacy systems that were not designed for interoperability. Moreover, because DRE are often
required to be long-lived, functional aspects of the system often need to be “refreshed” (i.e., replaced with
corresponding pieces that represent updated technology), but often functionalities to be replaced are “tan-
gled” with the rest of the system so that cannot be easily decoupled and swapped out.

• Need for families of systems.DoD platforms usually evolve through multiple versions over time, to support
technology updates, customized versions for sale to allies (e.g., the F-16I – Israeli version of the F-16),
trainer versions (e.g., the two-seater F/A-18B). Though these different versions have many commonalities,
current development practices make it difficult to directly reuse software across platforms since code is often
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tied directly to particular hardware, resulting in costly maintenance of multiple versions of code with similar
functionality.

1.2 Overview of Technologies Emphasized In PCES

PCES researchers have sought to address the challenges above using a variety of technologies includingcomponent
middleware, domain specific modeling techniques, andvarious forms of flexible model and code level analyses.

1.2.1 Component Middleware

Over the past decade researchers have sought to develop, optimize, and standardizeobject-oriented middleware
[HV99]. Middleware is systems software that (1) resides between applications and the underlying operating sys-
tems, network protocol stacks, and hardware and (2) helps shield DRE applications from having to custom-build
interfaces to differing platforms and from having to develop low-level code needed to transform data into a form
that can be moved across network connections. Middleware is often described as the “glue code” or “plumbing”
that hooks multiple applications together and routes data and information transparently between different back-
end data sources. Object-oriented middleware also implements reusableservices(such as asynchronous event-
based communication, global scheduling, and dynamic resource management) that provide functionality common
to many DRE applications. Together, the use of middleware and supporting services can dramatically reduce
the amount of effort required to build and maintain DRE applications. Examples of object-oriented middleware
for DRE systems include Real-time Java [BGB+00] run-time environments (e.g., jRate [Ang03]) and Real-time
CORBA object request brokers (ORBs) [Obj02] (e.g., TAO [SLM98]).

More recently,component middleware[HC01] has defined additional capabilities that enhance object-oriented
middleware for DRE systems, as follows:

• It defines a component abstraction that consists of a collection of (1)interface ports, exposing operations
clients can invoke to use a service provided by the component, or indicating the methods/services that the
component itself depends on to achieve its functionality and (2)event portsthat are used to publish and
consume events. These facilities provide well-defined interfaces that hide implementations (keeping client
code from becoming unnecessarily tangled with low-level implementations in the component) and make
units easier to plug and unplug.

• It allows developers to focus on programming their application “business logic” (i.e., primary functionality),
rather than wrestling with lower-level tasks (e.g., network programming, scheduling, security, and event
processing). Instead, the application functionality is associated with the configuration-related capabilities
via auto-generated component “glue code” that standardizes the interaction with other components and the
middleware.

• It supports componentcontainersthat define a common operating environment in which a set of related
components execute. Containers also provide components with key resources (e.g., priority levels, real-
time threads of control, and transparent state replication) and shield components from many tedious, error-
prone, and non-portable complexities of the underlying networks, operating systems, and object-oriented
middleware.

• It makes a significant attempt to address problems of configuring and deploying DRE applications throughout
networks of heterogeneous computing nodes by providing standardized component assembly, packaging,
and distribution formats. These configuration and deployment mechanisms enable the core functional issues
to be decoupled from QoS-related issues so that QoS properties can be developed, configured, monitored,
and managed not by those developing application functionality, but by a separate set of specialists (e.g.,
middleware developers, systems engineers, and administrators) who are often much better positioned to
make the appropriate configuration and deployment choices.

Examples of component middleware for DRE systems includes Prism [SR03] and the Lightweight CORBA Com-
ponent Model (CCM) [Obj03] (e.g., CIAO [WSG+03]).

Despite being in its infancy, component middleware is already having a positive impact on the quality and
productivity of developing DRE systems, such as distributed interactive simulations [Nos02], avionics mission
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computing systems [SR03], and distributed multimedia applications [LGG+01]. By defining additional capa-
bilities and common services – as well as standardizing configuration and deployment mechanisms – component
middleware enables DRE application developers to concentrate on the application-specific aspects of their systems,
and leave the application-independent communication, deployment, and QoS-related details to DRE middleware
developers. As a result, an increasing number of DRE systems are being developed using component middleware.

1.2.2 Model-driven Development Techniques

The large scale and dynamic nature of next-generation DRE systems will make development testing, maintenance,
and technology refresh increasingly hard. Model-based software development is a key emerging technology for
next-generation DRE systems [HG96, Lin99, SK97, Obj01a]. Software models provide abstract representations
of software structure and behavior that allow developers and analysis tools to focus only on the software features
exposed in the model without being overwhelmed by a myriad of low-level details.

Conventional modeling environments have proven useful by providing graphical views of system aspects, but
these views are often no more than boxes and arrows that represent static structure while omiting deeper semantic
functional and QoS properties, information about adaptability, and control of specialized entities. Moreover, while
many development environments support class/object-based modeling of systems [Mat99, Obj01a, Obj01b], few
environments support modeling for component-based system development tasks, such as component interface def-
inition, component assembly, and component deployment, and fewer still provide the additional QoS management
needed in the DRE domain.

In our PCES work, our team sought to emphasize that modeling is not only central in organizing the system’s
structure, it is also the vehicle by which analysis results are generated and displayed, and by which adaptation is
specified and managed. The key research challenges associated with realizing this vision have been to (1) identify
levels of abstractions and system views that are relevant for effective DRE system development that span a variety
of DRE architectures, but yet can be tailored to specific product lines [CN02, Sha98b], (2) develop facilities for
accumulating and visualizing the results of analysis and for visualizing adaptation of system entities, and (3)
identify appropriate mechanisms for modeling crucial QoS aspects, such as real-time and availability attributes
and constraints/conflicts between these.

Leveraging meta-modeling technology for scaling and product-line tailoring. We have sought to provide a
collection of standardized views that can be universally applied to a variety of DRE architectures, but yet can be
tailored to particular architectures and product lines. For example, many DRE component models share common
abstraction levels, such as (1)component interfaces, where a components ports and external attributes are defined,
(2) component implementations, which are a lower level of abstraction where the 10-20 classes that make up a
component are implemented and associated with its interface ports, (3)system assemblies, which are a level higher
than component interfaces in which components are connected together by their ports, (4)subsystems, which are a
level higher than system assembly where components are grouped according various goals (such as functionality
or protection), and (5)deployments, which are a refinement of system assembly in which the characteristics of
underlying platforms are modeled.

Our goal has been to develop modeling strategies these general views to be tailored in a systematic way to
particular component models and product lines. These strategies enable tailoring to achieve the distinctions be-
tween component deployment models (e.g., the CCM and SCA) that have a similar global structure but differ
in the specific format of assembly files. Moreover, our strategies have enabled a particular DRE architecture to
be further tailored to incorporate domain attributes and development standards for particular product lines (e.g.,
a component port may include attributes stating various security policies or encryption strengths for a particular
SCA product line, while port attributes for an avionics product line include attributes for rate/priority of execution
and middleware communication path attributes).

1.2.3 Model and Code-Level Analyses

As the PCES program began, component middleware technology had been effective in relatively small-scale DRE
applications, such as statically configured avionics mission computers with 100s of components configured into
a deployment [SR03]. One of our goals in the PCES program was to develop different analysis technologies to
provide greaterautomationin the configuration of larger systems and toincrease assuranceof completed systems.
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Our worked involved expanding existing forms of program-level analysis to include analysis at a variety of
levels of system abstraction (most importantly, the model level). Models were annotated with various forms of
lightweight semantic annotations that capture crucial system properties. In our vision, models and semantic spec-
ifications serve two roles: (1) inproperty checkinganalyses, our lightweight annotations serve as specifications
against which a system can be analyzed, and (2)inproperty discoveryanalyses, they serve as descriptions of
properties that are discovered during analyses and which are use to guide to system synthesis, configuration and
customization.

There has been a flurry of work in recent years on techniques for verifying lightweight functional properties at
the program-level [BMMR01, BHPV00, CDH+00] but these techniques have yet to be applied in a systematic way
to the multiple levels of abstraction in component-based middleware. We have been able to develop approaches for
providing higher assurance for DRE systems by adapting a variety of these techniques to DRE abstraction layers.
For example, we were able to demonstrate how the global temporal properties (imposing constraints on event
orderings etc.) could be verified at various DRE abstraction levels by building on our previous work on verification
of Java programs. Specifically, we have shown how the complex semantics of an RT-CORBA event service can
be captured using our domain-specific model-checking technology [RDH03] and then used to check temporal
properties at the assembly layer for avionics systems [WDMBDJH+03]. We have also been able to verify the
lightweight annotations describing dependences between components by adapting our Java slicing infrastructure
[HCD+99] and assembly-level dependence analysis techniques [HDD+03].

1.3 Overview of Our DARPA PCES Focus, Results, and Deliverables

The goal of our PCES work has been to show how model-integrated computing and adaptive and flexible middle-
ware frameworks can be applied for defining, analyzing, generating, and customizing large-scale high-assurance,
high-performance DRE systems – thus, effectively addressing the challenges described above. Specifically, we aim
to provide development frameworks that contain as a centerpiece a variety of forms of software models. Software
models provide abstract representations of software structure and behavior that allow developers and analysis tools
to focus only on the software features exposed in the model without being overwhelmed by a myriad of low-level
details. A primary activity of this project is to take concepts from software industry standards such as the Object
Management Group’s “Model-driven Architecture” and adapt these to address challenges particular to military
DRE systems.

Project Centerpiece To validate the technologies we developed, we have built a model-integrated development
environment called Cadena. Cadena provides a variety of capabilities for model-driven implementation and anal-
ysis of component middleware systems. Throughout the course of the PCES project, we have demonstrated that
Cadena can dramatically reduce the effort required to construct component-based systems in the context of product-
line architectures such as that used for Boeing’s Bold Stroke avionics mission-control software. Moreover, Ca-
dena’s verification and “correct-by-construction” modeling techniques provide increased confidence in the safety
and correctness of the resulting system. In Section 4 of this report, we describe the results of using and evaluating
Cadena in the following contexts associated with the PCES program.

• The PCES Avionics Open Experimental Platform (OEP) – Working with the PCES OEP providers from
Boeing, we defined a broad collection of process metrics (e.g., time required to carry out various stages of
system develop, time to locate and repair defects, time to generate implementation code, etc.). In experiments
carried out by Boeing engineers, Cadena was able to dramatically reduce the time and effort required to
develop different classes of systems (compared to baseline measured efforts provided by Boeing).

• Lockheed Martin / Vanderbilt University (VU) collaboration – Together with researchers from VU, we
worked with Lockheed Martin engineers to build and apply an integrated model-driven development tool
chain that included Cadena as well as the CoSMIC modeling tool built by VU researchers. This tool chain
was used to experiment with model-driven development techniques in the context of using CCM to construct
distributed control systems relevant for the Highly Mobile Artillary Rocket System (HIMARS) developed
by Lockheed Martin.

• PCES Capstone Demo – Cadena served as the model-driven development platform used to integrate a variety
of Real-Time Java technologies that implemented the mission control software for a pair of Unmanned Air
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Vehicles (UAVs). The Capstone Demo demonstrated the ability of model-driven development technologies
as realized in Cadena to rapidly develop and configure RT-Java based mission critical software.

Deliverables PCES funding has allowed our research group to produce an extraordinary collection of high-
quality software engineering tools – each of which is a world-leader in innovations within the associated technology
spaces. Section 7 overviews these tools:

• Cadena (described above) – a model-driven development and analysis environment for building component-
based systems,

• Indus – a sophisticated analysis and dependency engine for for Java,

• Bogor – a extensible software model checking framework capable of supporting domain-specific model
checking extensions such as those needed to model check properties of avionics systems deployed on real-
time middleware.

During the June 2004 – June 2005 time period, these tools have been downloaded over 3000 times by academic
researchers and industrial engineers around the world.

Dissemination of Research Results During the PCES project, we have published over over 40 research papers in
journals, invited book chapters, conferences, and workshops (a full listing is given in Section 5). During this time,
KSU PCES PIs have also given a number of invited talks and tutorials at top-ranking international conferences and
workshops (a full listing is given in Section 6.

2 Cadena

There is a wide body of literature dealing with the theory of modeling distributed systems and automated analysis of
high-level state-based models using state-space exploration techniques such as model-checking. However, despite
the popularity of component-based frameworks and their potential to be utilized in mission- and safety-critical
applications, relatively little has been done to scale up these analysis techniques for the purpose of providing
automated analysis tools for component frameworks. This is particularly the case with CCM – partly due to the
fact that the CCM specification as part of CORBA 3.0 has only recently been finalized. Popular tools such as
Rational Rose do not even provide design support for CCM yet.

To investigate the effectiveness of a variety of behavioral analysis techniques for component-based systems, we
have builtCadena1 – an integrated development environment for building high-assurance CCM-based systems.
Cadena provides facilities for defining component types using CCM IDL, specifying dependency information
and transition system semantics for these types, assembling systems from CCM components, visualizing various
dependence relationships between components, specifying and verifying correctness properties of models of CCM
systems derived from CCM IDL, component assembly information, and Cadena specifications, and producing
CORBA stubs and skeletons implemented in Java. We are applying Cadena to avionics applications built using
Boeing’s Bold Stroke framework. Thus, important aspects of this work include using dependence information to
help generate real-time and distribution aspects, and modeling the real-time CORBA event service used in Bold
Stroke.

The primary technical contributions of this Cadena discussed here are

• a framework for light-weight dependency analysis (with varying levels of precision) of component-based
specifications, and

• a framework for extracting checkable transition system models from component-based specifications of sys-
tems that use middleware services (such as event services) where extracted models incorporate the threading
semantics of the relevant middleware services.

1“Cadena” is a Spanish word meaning “network”. Cadena is also an acronym for Component Architecture Development ENvironment for
Avionics systems.
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These particular capabilities were developed in response to requests from Boeing engineers working on Boeing’s
Bold Stroke avionics middleware infrastructure.

In this presentation we further focus on Boeing’s Bold Stroke program, which is an example where CORBA
middleware has been embraced in a DRE domain for the reasons outlined above [Sha98a, Sha99, DS99]. Bold
Stroke is a product-line based program providing object-oriented mission critical avionics software to a variety
of military aircraft produced by the Boeing company. Avionics software acts as the center of mission control for
an aircraft pilot. It manages the cockpit displays, navigation and tactical sensors as well as weapon deployments.
These complex systems have hard and soft real-time deadlines involving large amounts of periodic and aperiodic
processing, and support thousands of operating modes. In addition, the software developed for military aircraft is
maintained and updated over the course of many years. Although the development process is repeated for each
update, each update aims to preserve as much legacy software as possible to reduce cost and risk. Bold Stroke
represents a significant technological advance over Boeing’s previous mission computing development practices
which were largely assembly code based.

We have been interacting extensively with Bold Stroke engineers who have proposed a variety of interesting
challenge problems related to component-based design and analysis. Work on Cadena is driven in large part
by a desire to provide solutions to challenge problems related to behavioral analysis. Bold Stroke was initiated
before the OMG CCM specification process was underway. Thus, the Bold Stroke component design, is slightly
different from CCM, and therefore does not apply the CCM Interface Definition Language (IDL) (now part of
OMG CORBA IDL 3.0) to auto-generate component code. In current practice, component developers receive a
natural language description of functional and real-time requirements along with UML collaboration diagrams built
with Rose showing component interactions, and development begins directly with C++ coding. This means that
high-level designs are not tool-leveraged in any way (either for code generation or for automated analysis). Bold
Stroke engineers have suggested a number interesting ways that high-level designs could be analyzed for event/data
dependency and mode state information for the purpose of inferring distribution, scheduling, and real-time aspects,
as well as checking for common design flaws and satisfaction of application specific requirements.

Beyond the particular domain of DRE mission/safety-critical systems, we believe that CCM and other com-
ponent oriented frameworks are excellent vehicles for injecting light-weight formal methods and sophisticated
automated analysis techniques across the entire software development process. In the past, it has often been dif-
ficult to get developers to write formal specifications – instead they prefer to move quickly to writing code. We
believe that this is because there is little tool support for leveraging such high-level descriptions. In contrast,
CCM’s IDL (which defines the structure of components) and CCM’s component assembly descriptions (which
describe how components are connected together) are central to the use of CCM since a large percentage of a sys-
tem’s code is generated directly from these. These high-level descriptions can be leveraged in a number of ways:
component connections can be visualized (essentially, UML collaboration diagrams can be autogenerated), useful
dependency analysis can be performed at this level, light-weight behavior specifications can be incorporated, and
code generation can be tailored to produce code that is more amenable to verification and certification. When
applying model-checking techniques, one often struggles to find appropriate system abstraction that make state
exploration tractable. CCM descriptions naturally form system abstractions, and by varying annotations on the
high-level descriptions (e.g., to expose the state of mode variables, etc.) the system model processed by model-
checking techniques can be easily abstracted (to hide state) or refined (to expose more state and more interesting
behaviors).

Cadena provides the following capabilities for development of CCM systems.
• A collection of light-weight specification forms that can be attached to IDL to specify mode variable do-

mains, intra-component dependencies, and component state-transition semantics. These forms have a natu-
ral refinement order so that useful feedback can be obtained with little annotation effort, and increasing the
precision of annotation yields more precise analysis. In addition, Cadena specifications allow developers to
specify the same information in different ways, achieving a form ofcheckable redundancythat is useful for
exposing design flaws.

• Dependency analysis capabilities allow tracing inter/intra-component event and data dependencies, as well
as algorithms for synthesizing dependency-based real-time and distribution aspect information.

• A novel model-checking infrastructure dedicated to event-based inter-component communication via real-
time middleware enables system design models (derived from CCM IDL, component-assembly descriptions
and annotations) to be model-checked for global system properties.
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Figure 1: ModalSP – a simple avionics system

• Java component stub and skeleton code generated using the OpenCCM [GOA02] CCM IDL to Java compiler.

• A component assembly framework supporting a variety of visualization and programming tools for devel-
oping component connections.

• A CCM deployment facility dedicated to the Boeing Bold Stroke architecture (static component connections
with a real-time event-channel) that allows deployment code to be automatically generated.

• The Cadena tools are implemented as plug-ins to IBM’s Eclipse IDE. This provides an end-to-end integrated
development environment for CCM-based Java systems.

Several of these facilities are targeted directly to the avionics domain, but Cadena is useful in many respects for
CCM development in general. Although Cadena currently emphasizes Java in its back-end facilities, since CCM is
language-neutral, Cadena’s front-end design capabilities are not Java dependent. Moreover, back-end capabilities
can be easily extended in the future to other languages, for example, C++ using OpenCCM’s [GOA02] planned
support for C++. Other development systems such as MetaH [Ves98] support several important aspects for DRE
systems that Cadena does not, such as timing and schedulability analysis, reliability and fault analysis, as well
as sophisticated deployment strategies. The primary motivation for our work is to build a system that is robust
enough for development of real systems with the goal of assessing the effectiveness of applying static analysis,
model-checking, and other light-weight formal methods to CCM-based systems.

2.1 CCM Overview and Example

To describe the features of Cadena, we will use as a running example a simple avionics system that shows steering
cues on a pilot’s navigational display. The pilot can choose between two different display modes — each mode
yields a different set of steering cues. Atactical display mode displays cues related to a tactical (i.e., mission)
objective. Anavigationdisplaymodedisplays cues related to a navigational objective. Cues for the navigation
display are derived in part from navigation steering points data that can be entered by the navigator.

Figure 1 presents the CCM architecture for the example system. The system is realized as a collection of
components coupled together via interface and event connections. The system include threemodal components
(AirFrame, NavSteering, andTacticalSteering) whose behavior changes depending on themodeof the component
(the mode of each component will be represented by an attribute with an appropriate enumeration type). Moreover,
the system is designed to run on a single processor. For this reason, we refer to the example asModalSP. Input
position data is gathered periodically at a rate of 20 Hz in theGPS component and then passed to an intermediate
AirFrame component (which in a more realistic system would take position data from a variety of other sensors).
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#pragma prefix "cadena"
module modalsp {
interface ReadData {
readonly attribute any data;

};

eventtype TimeOut {};
eventtype DataAvailable {};

enum LazyActiveMode {stale , fresh};
component LazyActive {
provides ReadData dataOut;
uses ReadData dataIn;
publishes DataAvailable outDataAvailable;
consumes DataAvailable inDataAvailable;
attribute LazyActiveMode dataStatus;

};

enum OnOffMode {enabled , disabled };
interface ChangeMode {
attribute OnOffMode modeVar;

};

component Modal1 {
provides ChangeMode modeChange;
provides ReadData dataOut;
uses ReadData dataIn;
publishes DataAvailable outDataAvailable;
consumes DataAvailable inDataAvailable;

};
};

Figure 2: CCM/Cadena artifacts for ModalSP (excerpts)

Both theNavSteering andTacticalSteering component produce cue data forDisplay based on air frame position
data. TheNavigator component polls for inputs from the plane navigator at a rate of 5 Hz and uses those to form
NavSteeringPoints data. This data is then used to form navigational steering cues inNavSteering. PilotCon-
trol polls for a pilot steering mode at a rate of 1 Hz and enables or disablesNavSteering andTacticalSteering
accordingly.

Figure 2 gives the CCM IDL that defines the component typesLazyActive andModal1 for the AirFrame
andTacticalSteering component instances in Figure 1. CCM componentsprovide interfaces to clients on ports
referred to asfacets, anduseinterfaces provided by other clients on ports referred to asreceptacles. Components
publishevents on ports referred to asevent sources, andconsumeevents on ports referred to asevent sinks. In
the LazyActive component type of Figure 2,dataOut is the name of a facet with interface typeReadData,
and dataIn is the name of a receptacle with interface typeReadData. Similarly, inDataAvailable is the
name of an event sink of typeDataAvailable, andoutDataAvailable is the name of an event source of type
DataAvailable. Components can also haveattributessuch asmodeVar that are used either in component con-
figuration or to represent some other aspect of component state. For an attribute with nameattrname, the IDL
compiler will automatically generate an accessor methodget attrnameand a mutator methodset attrname. If
the attribute is declaredreadonly as in theReadData interface of Figure 2, then only an accessor method is
generated2.

While CCM allows components to be dynamically created and (dis)connected, Bold Stroke applications follow
typical practice in safety/mission-critical systems and employ a static component allocation and configuration
policy by creating and connecting components only in a system initialization phase. Dynamic reconfiguration is
achieved by including components whose behavior can be deactivated based on the system mode settings.

The CORBA 3.0 specification does not provide a dedicated language for static system configuration. Cadena
provides three languages for describing configurations. Graphical, textual, and forms-based descriptions are syn-
chronized through a single internal form. Figure 3 displays a fragment of the textual Cadena Assembly Description
(CAD) for the example system. In CAD, a developer declares the component instances that form a system, along
with rate and distribution annotations. For receptacle and event sink ports, aconnect clause declares a connection
between a port of the current instance and a port of the component that provides the interface/event. This follows a

2The name of the accessor/mutator methods are dependent on the IDL to language mapping.
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system ModalSPScenario {
import cadena.common , cadena.modalsp;

Rates 1, 5, 20; // Hz rate groups
Locations l1 , l2 , l3; // abstract deployment locs
...
Instance AirFrame implements LazyActive on #LAloc {
connect this.inDataAvailable

to GPS.outDataAvailable runRate #LArate;
connect this.dataIn to GPS.dataOut;

}
Instance TacticalSteering implements Modal1 on l2 {
connect this.inDataAvailable

to AirFrame.outDataAvailable runRate 5;
connect this.dataIn to AirFrame.dataOut;

}
...

}

Figure 3: Cadena Assembly Description for ModalSP (excerpts)

convention that connections are declared on the client-side of an interface/event connection. Each event sink port
connection uses therunRate clause to indicate which rate group thread should run the event handler upon event
dispatch. For each instance, a developer names a location upon which the instance is to be allocated. Location
names are not bound to physical locations at this point in the process, but will subsequently be mapped to CORBA
specific notions such as containers and nodes at deployment time.

Incomplete specifications and incremental construction are supported by allowing rate and location variables
such as#LAloc and#LArate. These act as place holders, and values for these can be inferred using the non-
functional aspect synthesis algorithms presented later. Equality constraints between such variables can also be
specified, and the synthesis procedures generate output that conforms to these constraints. A type-checking proce-
dure ensures well-typed connections.

Bold Stroke applications follow acontrol-push data-pullarchitecture in which data is transferred between data
producer and data consumer components in a two step process. First, a data producer (e.g.,TacticalSteering)
publishes aDataAvailable event indicating that it has updated some data that is ready to be consumed. Then,
when a subscribing data consumer (e.g.,Display) receives the event, it calls aget dataaccessor method in a facet
provided by the supplier to retrieve the data. Thus, threads never block waiting for data to become available, and
this simplifies the design of real-time aspects. Under this strategy, component connections come in pairs consisting
of an event connection for notification that data is ready, and an interface connection for fetching the data.

TheLazyActive component type of Figure 2 implements a variant of this strategy to handle situations where
a componentC (e.g.,AirFrame) depends on data that is updated much more frequently thanC’s clients requireC’s
data. For example, theAirFrame component does not fetch data immediately fromGPS when notified, but instead
simply sets itsdataStatus attribute to indicate that its data is stale and notifies its clients (e.g.,TacticalSteering)
that its data is available. When aget datacall for AirFrame data comes from one of its clients, it checks the
dataStatus attribute to see if its data is fresh, and if it is, it returns it immediately to the calling client. If it is
not fresh, it calls theGPS get datamethod, updates its own data with the returnGPS data, sets itsdataStatus to
fresh, and returns the newAirFrame data to the calling client.

BothNavSteering andTacticalSteering aremodal componentsthat have two modes (enabled,disabled). These
modes are set byPilotControl via ChangeMode facets provided by the modal components. When a modal com-
ponent is disabled, any events received are simply discarded by the component. When enabled, the component
responds according to the control-push data-pull strategy (e.g.,TacticalSteering responds to aDataAvailable
from AirFrame by callingAirFrame’s get data method.

In Bold Stroke applications, even though at a conceptual level component event source ports are connected to
event sink ports, in the implementation, event communication is factored through a real-time CORBA event chan-
nel. Use of such infrastructure is central to Bold Stroke computation because it provides not only a mechanism for
communicating events, but also a pool-based threading model, time-triggered periodic events, and event correla-
tion. In order to shield application components from the physical aspects of the system, for product-line flexibility,
and for run-time efficiency, all components arepassive– component methods are run by event-channel threads that
dispatch events by calling the event handlers (“push methods” in CORBA terminology) associated with event sink

9



OpenCCM

Editor

Synthesizer

Textual
View

CAD Compiler

Editor.cps

.cad

.idl3

.spec

Stubs
(.java)

(.java)
Skeletons

(.java)
Implementation

System Assembly
(.java)

IDL2JavaIR3

TimeEdit

Property

Non−Functional
Aspects

Graphical
View

Deployment
Generator

Dependency
Analyzer Visualization

Model
Generator DSpinDSpin

model

View
Form

Figure 4: Cadena architecture

ports. The roots of computation are time-triggered events (e.g., events associated with event sinks ofNavigator,
GPS, andPilotControl) supplied at a specified rates by the event-channel. Dispatching of these events causes the
dispatch threads to run the associated handlers which contain methods calls and publishing of subsequent events.
In the current Bold Stroke implementation, the event channel thread pool has exactly one thread associated with
each rate. As noted earlier in the discussion of Figure 3, each non-time-triggered event port also has a rate specified
at configuration time which indicates itsrate group, i.e., the pool thread that should run the event handler when the
event is dispatched.

The event channel also provides event correlation and event filtering mechanisms. In the example system,
and-correlation is used, for instance, to combine event flows fromNavSteering andAirFrame into NavDisplay.
The semantics ofand-correlation on two eventse1 ande2 is that the event channel waits for an instance of both
e1 ande2 to be published before creating a notification event that is dispatched to the consumer of the correlation.
The semantics of a correlator is defined by an automaton over event traces derived from the correlation expression
[Sip02].

Note that CCM IDL captures the interface properties of components – Cadena’s notation for expressing com-
ponent behavior is presented in the next section.

2.2 Cadena Architecture

Figure 4 displays the internal structure of the Cadena toolset. Cadena projects contain four high-level specifica-
tion forms: a CORBA 3 IDL file that defines the structure of component types (see Figure 2), a Cadena Property
Specification (CPS) file that specifies various aspects of component behavior (see Figure 10), a Cadena Assembly
Description (CAD) that specifies the components instances that form the system, the connections between them,
along with other real-time and distribution property information (see Figure 3), and a specification file that stores
information about the desired correctness properties of the system. These input artifacts are created using cus-
tomized editors built using Eclipse plug-in facilities. In particular, the CAD format has a textual editor (shown in
Figure 5), a graphical editor (shown in Figure 6), and a form-based editor that allows one to easily define different
projections of the component assembly (e.g., connections only, distribution and rate assignments only, etc., see
Figure 7). The graph structure described by the CAD is the basic data structure that is used by the dependency ana-
lyzer (discussed in Section 2.3), the graphical view displayer, and the deployment code generator (which generates
Java code to allocate and connect components).

While the assembly is perhaps the most involved part of the system development and hence is supported
in Cadena through three different input methodologies, the other aforementioned aspects (namenly component
definition and behavioral specification) also come with dedicated editing environments. Figure 8 shows the Cadena
editor for IDL3 specifications, Figure 9 presents the behavioral specification (CPS) development environment.

Dependence Specifications:Figure 10 displays excerpts of the CPS file for our example system. In a CPS de-
scription, developers may declare intracomponent dependencies between ports and simple behavioral descriptions
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Figure 5: Textual Editor for Scenario Assemblies (CADENA Assembly Description Language)

of a component’s event handlers and other methods. The dependence declarations take the formtrigger-port-action
-> response-port-action. For example, Figure 10 declares that consumption of an event on theinDataAvailable
port of aLazyActive component may trigger a publish on theoutDataAvailable port in bothstale andfresh
modes. The absence of a dependence for thedataOut port in thefresh mode indicates that any call ondataOut
should not result in an action on any other port.

A dependencydefault may have one of two settings: anone setting allows developers to start with an empty
dependence relation and add new dependencies (i.e., dependences do not exist except when declared), anall
setting allows developers to start with a universal dependence relation and then prune dependences (i.e., by default
all possible dependencies between ports exist). In theall setting, once a port is mentioned on the left-hand-side,
then only declared dependences apply for that port. For example, forModal1 which has theall setting, the
absence of declarations for thedataOut port specifies that the ports (outDataAvailable anddataIn) do depend
on dataOut (note that is an overapproximation of the actual behavior). Dependencies are pruned inModal1 by
giving refining declarations such as those for themodeChange andinDataAvailable ports that list no dependents
to the right of the->.

Behavioral Specifications:Since transition systems for model-checking are generated from behavioral descrip-
tions, their primary purpose is to capture (a) the actions that one wishes to reason about in temporal specifications
and (b) simple control-flow relationships between these actions. Cadena supports observable actions such as event
publish and consume, method call and return, data flows between system variables, assignments to mode vari-
ables. Each behavioral description in the CPS format gives both a data and control abstraction of a component’s
actual implementation of an event handler or method. Data abstraction is achieved by only exposing concrete
values of mode variables (or other application variables with bounded domains). This was motivated by the fact
that Bold Stroke engineers are primarily concerned with reasoning about modal behavior at design time since
analysis of system modes and mode transitions can be leveraged in several ways. Even though concrete values
of other application variables are usually not modeled, data flows between such variables can be captured. For
example,internalData <- dataIn.get data(); in theLazyActive behavior models a flow from the result
of theget data(); method into theinternalData variable. This may abstract many actual computation steps
in the actual implementation. The behavioral language contains simple control structures such as sequencing and
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Figure 6: Graphical View/Editor for Scenario Assemblies

conditionals and abstracts control by simply omitting commands from the implementation that one does not wish
to observe. Note that dependence information can also be derived from behavioral specifications, and this provides
a form of checkable redundancy. The intent is that developers begin with the more light-weight dependence spec-
ifications, leverage those, then only incorporate behavioral specifications when model-checking analysis is to be
applied.

Code Generation:Cadena uses the OpenCCM tools [GOA02] to generate system implementations. The OMG
CORBA 3.0 specification standardizes a strategy for compiling IDL (of which the CCM IDL is part) down to
CORBA IDL 2, which can then be translated to an underlying implementation language such as Java or C++. This
translation process automatically generates a substantial amount of infrastructure code for tasks such as component
creation and connecting and disconnecting ports. The output code contains the usual CORBAstubsandskeletons,
along with skeletonimplementationsof component methods and event handlers. With this code generation, the
developer only needs to implement event handlers and methods on provided interfaces. In future work we are
exploring the extension of CCM-based code generation strategies to integrate code generation for component
handler state-machines and global synchronization policies [DDHM02].

Methodology:When building systems with Cadena, we intend for developers to take the following steps: (1)
load a library of domain-specific components and associated CPS specifications, (2) define new project-specific
components and associated behavioral CPS specifications, (3) use CAD editors to configure connections between
components, (4) use dependency viewer to examine dependencies, (5) use non-functional aspect synthesis tools
to attach distribution and rate information (see Section 4.3), (6) specify desired global correctness properties (see
Section 5.5), (7) generate a transition system model and model-check correctness properties (see Section 5), and
(8) revise system based on feedback from analysis tools.
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Figure 7: Form-based Editor for Scenario Assemblies

2.3 Dependency Analysis

Even with small systems of around 20-30 components, relationships between components and component depen-
dences are often hard to determine from visual inspections of textual or graphical component assembly views.
Bold Stroke systems can have 1000s of components, and Bold Stroke engineers have identified development of
automated support for component dependency analysis and visualization as a high priority. As discussed in the
previous section, Cadena provides several different layers of dependency specification and analysis with the goal of
enabling incremental construction of dependency specifications – little or no specification effort should still allow
useful tool feedback since a fair amount of dependency information (inter-component dependences) can be derived
from the CAD information. Increasing the details of specifications should yield more precise visualizations and
analysis. Here are the steps that we expect developers to take when creating and refining dependence information:
(1) give component assembly without CPS dependence information using the global dependence default that all ac-
tions on input ports of a componentC give rise to actions on all output ports ofC, (2) refine by giving dependences
without taking into account modal behavior, (3) refine by considering modes in CPS dependence declarations, and
(4) refine by giving behavioral descriptions (which capture dependence information via control-flow properties).
Bold Stroke developers currently use dependency information manually to determine non-functional aspects such
as distribution, connection implementation (synchronous vs. non-synchronous calls), rate group assignment, etc.
Cadena leverages partial dependence information to provide automated support for developers.

2.3.1 Basic notions of dependency

Given a component library and component assembly description (along with optional Cadena property specifi-
cation file), Cadena’s port-level dependency module builds aport dependence graphPDG = (N,E) where each
noden∈ N is a component/port pairi.p. Edges (i.e., dependences) between PDG nodes arise from two sources:
inter-component dependencescorresponding to port connections specified in component assembly descriptions
and intra-component dependencescaptured by CPS declarations in component property specifications. Whether
or not intra-component dependences are generated for a particular instanceC depends on thedefault dependence
settingfor C as discussed previously. The default setting is given by the global default dependence declaration
unless a component-local default declaration exists.

For inter-component dependences, when there is a connection betweeni1.p1 andi2.p2 in the component assem-
bly description, we say thati1.p1 is event dependenton i2.p2 (written i2.p2

e→ i1.p1 – the arrow pointing in the di-
rection of the event flow) ifp2 (resp.p1) is an event source (resp. sink). Similarly, with the above connection,i1.p1
is interface dependenton i2.p2 (written i2.p2

n→ i1.p1) whenp2 (resp.p1) is a facet (resp. receptacle). For example,
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Figure 8: Editor for CORBA Interface Definition Language (IDL) Files

from the CAD information in Figures 1 and 3, we have, e.g.,GPS.outDataAvailable
e→ AirFrame.inDataAvailable

andGPS.dataOut
n→ AirFrame.dataIn.

For intra-component dependences, for an instancei of component typec, i.p1 is trigger dependenton i.p2

(written i.p2
t→ i.p1) when either (1)p2 is declared to triggerp1 in the CPS forc, or (2) the default dependency

status forc is all and there exists no trigger declaration forp2 in the Cadena specification forc.
As with conventional work on dependences, a system slice for a particular point(s) of interest (referred to as

theslicing criterion) is computed by taking the transitive closure of the PDG from the PDG node(s) corresponding
to the slicing criterion. Basic slicing actions provided by Cadena include forward slice, backward slice, and slice
intersections.

2.3.2 Mode-aware dependences

To reason about mode-aware dependences, the mode state of the system is captured formally via a mode-state
vectorm which holds values for one or more mode variables from the system being analyzed. In the ModalSP
scenario, it is useful to consider a two-variable mode-state vector that holds the mode state ofNavSteering and the
mode state ofTacticalSteering. Given a PDGP= (N,E) for a system, a modal PDGPm = (Nm,Em) for mode-state
vectorm is formed by settingNm = N and havingEm include all inter-component edges, but only intra-component
edges that are enabled according tom.

Cadena provides mechanisms for collecting a set of mode-state vectors and using these to drive visualization of
dependences (i.e., Cadena users can choose to visualize dependences for a particular vector). Mode-state vector sets
can be entered explicitly in a form-based view or generated automatically from the state-exploration techniques
discussed in the following section. For instance, for the mode-vector mentioned above, it is instructive to have
a mode-based dependency view for the three mode-state vectors (disabled, disabled), (enabled, disabled), and
(disabled,enabled).

14



Figure 9: Editor for Component Property Specifications

2.3.3 Cadena support for dependencey analysis

Cadena integrates a variety of intra-component aware inter-component dependency-analysis tools, such asforward
slice, which includes components influenced by a selected component,backward slice, i.e. components which
influence a selected component, andchop, i.e. the intersection of a forward and a backward slice. For finer grained
analysis the same operations can be performed on port level and for specific mode-valuations. Finally, the slicing
toolset offers circle detection, an analysis useful to avid feedback loops and oscillation. Figure 11 shows the
Cadena display of a forward slice.

2.3.4 Dependency-driven analyses

In the Bold Stroke development process, several non-functional system aspects that are currently designed man-
ually can be aided or even synthesized automatically using the dependence analysis capabilities described above.
These include (following the order in which they are carried out) assigning priorities/execution-rates to event con-
sumer ports, appropriately distributing component instances to network nodes, and identifying opportunities for
switching asynchronous remote event delivery (the default mechanism) to synchronous local method calls.

Rate Assignment:Automated rate assignment begins by assigning rates to each event consumer port that
subscribes to a time-triggered event – the port simply is assigned the rate of the event. Using the results of the
dependency analysis above, the process continues by propagating rate information along the PDG in a forwards
direction and assigning the propagated rate value to each input and output port encountered. In cases where a port
has more than one rate propagated to it (e.g., when event correlation is used, or when two different input ports
influence an output port), the highest of the rates is propagated. The process continues until a fixpoint is reached
and the resulting rates on event consumer ports bind CAD rate variables.

In the example in Figure 1, automated rate assignment would result in assigning 1Hz to the event consumer of
PilotControl, and to the receptacles ofPilotControl and the facets ofTacticalSteering andNavSteering connected
to PilotControl. Similarly, (a) all ports inNavigator, NavSteeringPoints are assigned 5Hz, and the two ports of
NavSteering connected toNavSteering are assigned 5Hz, and (b) all ports inGPS andAirFrame are assigned
20Hz. There is now a conflict for the rates on the output ports ofNavSteering due to the fact both 5Hz and
20Hz rates are flowing in, so the higher rate of 20Hz is used. The process continues until the remainder of the
unassigned ports have a value of 20Hz. Cadena supports rate analysis through specific plug-ins. Figure 12 displays
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component LazyActive {
mode dataStatus;
dependencydefault == none;

dependencies {
case dataStatus of {
stale: inDataAvailable -> outDataAvailable;

dataOut.get_data (); -> dataIn.get_data ();
fresh: inDataAvailable -> outDataAvailable;

}
}

behavior {
any internalData;

dataAvailable.push(_) {
if (dataStatus == fresh)
dataStatus = stale;
outDataAvailable.push(_);

}

any dataOut.getData () {
if (dataStatus == stale) {
internalData <- dataIn.get_data ();
dataStatus = fresh;

}

return internalData;
}

}
}

component Device {
behavior { ... }

}

component Modal1 {
mode modeChange.modeVar;
dependencydefault == all;

dependencies {
modeChange ->;
case modeChange.modeVar of {
enabled: inDataAvailable

-> dataIn.get_data(),
outDataAvailable;

disabled: inDataAvailable ->;
}

}

behavior { ... }
}

Figure 10: Cadena Property Specification (CPS) (excerpts)

an example of dependency analysis cooperating with a rate-seeding heuristic plug-in to discover a mismatch in the
rate assignment within a given scenario.

Distribution Determination:The distribution algorithm then uses the rate information gathered above (a) to
determine the traffic on the connections between components, and (b) to identify components to be deployed on a
common location. In the example, the algorithm would group components closer to their trigger source with the
traffic and rate information used as the arbitrating criteria.

In the example,Navigator andPilotControl would be assigned distinct locations,l1 andl2. The rest of the
components would be assigned locationl3 as the traffic between them is higher assuming all data and event types
are of unit size. However, if the traffic on the data connection betweenNavigator andNavSteeringPoints was
higher than the cumulative traffic on other connections onNavSteeringPoints thenNavSteeringPoints would be
assigned locationl1. Although this simplistic example is not realistic, the ability to automatically leverage con-
nection and rate information to provide developers with guidance about component distribution can be a significant
advantage for large systems.

Synchronous Dispatch Optimization:For the reduction of asynchronous remote event deliveries, an event
delivery between two component instance portsi1.p1 andi2.p2 that does not involve correlation can be reduced to
a local method call wheni1 andi2 are co-located and when the rates attached top1 andp2 through the propagation
above are the same. In the example, this optimization can be applied to all non-correlated event connections.
However, ifNavSteeringPoints andNavSteering were assigned different locations in the distribution step above,
the optimization would not apply to that connection.

Finally, although we do not implement schedulability analysis in Cadena, we note that Cadena’s dependency
specifications (in particular, mode-aware dependence information) can be used to improve static scheduling. Cur-
rently, static schedulability analysis in Bold Stroke is based on summing execution costs along call-tree paths
deduced from component connections only (i.e., ourall dependence mode with no declared dependences). Ca-
dena specifications prune away many infeasible dependences, and therefore prune away infeasible paths that may
cause worst-case execution time estimates to be more conservative than necessary. This can sometimes save a sur-
prising amount of development time since systems are often restructured in significant ways to obtain schedulable
computations.

2.4 Model Checking Cadena Models with BOGOR

The most powerful analysis methodology of Cadena is the Model Checking integration with our Model Checker
BOGOR (described in Section 7.2). In this section we describe our experience and results with applying Model

16



Figure 11: Highlighting Forward Dependencies

Cheking to avionic systems.

2.4.1 Modeling approach

Building the approach of Garlan and Khersonsky [GK00] for model checking publish-subscribe systems, we factor
Cadena system descriptions into three parts:

(1) a collection of semantic descriptions for the components that make up the system (these are developer-
specified, application dependent and capture aspects (a) and (b) above), and

(2) a collection of reusable models of run-time event-delivery infrastructure (these are provided to the developer,
they are re-used in each application that Cadena supports, and they capture the semantics of inter-component
communication identified in aspect (c) above), and

(3) a collection of connection actions that specifies the connection topology of the components and hooks the
component models of part (1) to the middleware models of part (2).

Component models: Component models are defined using a simple transition-based modeling language that is
similar to, e.g., Promela [Hol97a] but also includes object references and method calls. Modeling intra-component
control-flow as required by aspect (a) above is straightforward using the control constructs of this language. Rea-
soning about system mode states as required by aspect (b) fits nicely with verification by model-checking since
mode variables have small finite domains (e.g., a component is anenabled or disabled mode). We model
such modes using enumerated types in our modeling language. In summary, our component models need only
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Figure 12: Detecting Rate Mismatches

include simple control-flow skeletons with transition actions consisting of reads/writes of mode variables, event
publish/receives, and method calls to local objects.

Middleware infrastructure models: Modeling inter-component communication is more difficult since the se-
mantics of CORBA communication layers must be captured at a level of abstraction that is fine enough to expose
interleavings that can lead to property violations, but also coarse enough to avoid state-space explosion for systems
with a large number of components. We define several variants that trade precision for space/time to varying de-
grees using Bogor’s extension facilities. This involves defining Bogor extensions to represent priority-based event
queues and customizing Bogor modules to the particular scheduling strategies used in the RT CORBA middleware.
When forming a system model, the developer chooses a particular variant for the middleware model from a library
provided by Cadena.

Connection actions: Bogor’s native support for method calls, dynamic object creation, and object references
allows components to be connected to the communication layer by passing object references in a manner the closely
follows the actual implementation. Accordingly, system initialization is modeled by a sequence of Bogor object-
creation statements to create models components and middleware services, followed by a sequence of connection
actions that pass appropriate references to establish connectivity.

2.4.2 Real-Time Event Channel

In this section, we give a more detailed description of the CORBA real-time event channel and its elements as
shown in Figure 13. This description will be used as a basis of explaining the Bogor event-channel models that
Cadena uses when model-checking Bold Stroke systems.

In Bold Stroke applications, even though at a conceptual level component event source ports are connected to
event sink ports, in the implementation, event communication is factored through a real-time CORBA event chan-
nel. Use of such infrastructure is central to Bold Stroke computation because it provides not only a mechanism for
communicating events, but also a pool-based threading model, time-triggered periodic events, and event correla-
tion. In order to shield application components from the physical aspects of the system, for product-line flexibility,
and for run-time efficiency, all components arepassive– component methods are run by event-channel threads that
dispatch events by calling the event handlers (“push methods” in CORBA terminology) associated with event sink
ports. Thus, the event channel layer is the engine of the system in the sense that the threads from its pool drive all
the computation of the system.
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Figure 13: RT CORBA Event Channel

As defined in the CORBA standard an event connection consists of two types of objects, one being thesupplier
(i. e. an event source port), the other theconsumer(i. e. the event sink port). An object of type consumer must
provide a push method, i. e. the event handler method, which takes the event as argument. An object of type
supplier stores a reference to a push method. To connect a supplier to a consumer, the supplier’s reference is set
to point to the consumer’s push method. To publish an evente, the supplier simply calls the push method via its
reference with the eventeas argument (i. e. it “pushes” the evente). Complying to that scheme, the Event Channel
offers aproxy consumer, i. e. a push method for each supplier to connect to. Similarly, for every consumer the
Event Channel provides aproxy supplier, a reference to point to the consumer’s push method.

This simple reference-to-method pattern allows only one-to-one connections. Since more than one consumer
might be interested in the events published by one supplier, the proxy consumer inside the Event Channel features
a list of consumers to which an event originating from that supplier will be pushed. This list is called thesubscriber
list, as the consumerssubscribeto the events of the supplier. This way every consumer and supplier only needs
to handle one-to-one connections with the Event Channel, while a multiplexing of the events is done inside the
channel.

The Event Channel also provides event correlation and event filtering mechanisms. In the example system
of Figure 1,and-correlation is used, for instance, to combine event flows fromNavSteering andAirFrame into
Display. The semantics ofand-correlation on two eventse1 ande2 is that the event channel waits for an instance
of both e1 ande2 to be published before creating a notification event that is dispatched to the consumer of the
correlation. The semantics of a correlator is defined by an automaton over event traces derived from the correlation
expression [Sip02].

The thread-pool shown in Figure 13 contains the three threads necessary to support the rate groups 20 Hz,
5 Hz, and 1 Hz of the example system of Figure 1. Following rate-monotonic theory, the 20 Hz thread has highest
priority, followed by the 5 Hz thread and then the 1 Hz thread. There is anevent dispatch queueassociated with
each threadtr that holds pairs(s,e) wheree is the event to be dispatched ands is the reference for an event sink
port that is subscribed to the event. Threadtr dispatches an evente from its queue by running the push method
associated with ports via the reference in the related proxy supplier with the eventepassed as a parameter.

Periodic computation is initiated by time-triggered eventser for each rater (e.g., events associated with event
sinks ofNavigator, GPS, andPilotControl). At the specified rater (e.g., at 20 Hz for theGPS event sink), a special
internal timer thread (not displayed) places a pair(s,er) in r ’s queue for each component ports that subscribes to
the timeout eventer . Threadtr dispatches these events by calling the push methods of subscribers via their proxy
suppliers, which in turn may execute methods calls and publish other events to drive further computation.

There are three different paths through the event channel thatecan take on its way to a particular subscribersk.
First, in the normal path, the proxy consumer obtains the reference forsk and the rate/priorityr declared forsk’s
handler fore (recall from the discussion of Figure 3 that each non-time-triggered event sink port also has a rate
identifier specified at configuration time that indicates which pool thread should be used to dispatch the event to
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which it is subscribed) from its subscriber list and puts the pair(sk,e) in the queue fortr .
Second, ifsk is associated withe via an event correlation the pair(sk,e) is not placed in the queue. Rather, the

correlator state machine is advanced to account for the publishing ofe. If the correlator reaches an accepting state,
then a pair(sk,ec) is placed in the queue matches the rate declared forsk’s handler whereec is acorrelation result
eventpossibly combines information from one or more events that were correlated.

The third path is an optimization path that short-cuts several steps in the event dispatch process based on
the following observation: if there is no correlation associated with(sk,e) and if subscribersk’s handler fore is
declared to have the same rate/priorityr as the threadtr that is runninge’s publisher, then(sk,e) will be immediately
placed inr ’s dispatch queue and the same threadtr will end up dispatchinge. In this case, RT event channel
implementation optimizes by havingtr directly call the push method forsk with eas a parameter – thus, bypassing
the queuing/dequeuing of(sk,e).

In detail, a trace using example of Figure 1 considering the 20 Hz thread would look as follows. A system
interrupt causes the event channel’s special timer thread to place a 20 Hz timeout pair(sk,e20) in the 20 Hz rate
group dispatch queue for each 20 Hz time subscribersk (in this case, the only subscriber is thetimeout port of
GPS. Since the 20 Hz queue is no longer empty, the 20 Hz-rate-group thread is started to call the event handler
(push method) ofGPS. Running theGPS handler for the timeout event reads data from the physicalGPS device
and issues aDataAvailable event, i. e. it calls the according push method in the connected proxy consumer
inside the Event Channel. This method then, still executed by the same threadt20, would typically queue the event
into the dispatch queues of the subscribing components’ thread groups. The subscriber for thisDataAvailable
event from theGPS is theAirFrame, which also belongs to the 20 Hz thread group, so in this case the optimization
path is used andt20 thread directly calls theinDataAvailable event handler ofAirFrame. This handler itself
pushes aDataAvailable event the consumer proxy associated with theAirFrame outDataAvailable port. This
proxy has a longer list of subscribers: it queues the event into the dispatch queue for theNavSteering and for
theTacticalSteering component, and it forwards the event to theand-correlators which also consume events from
NavSteering andTacticalSteering respectively. The state change in the correlators which reflects the incoming
event is also executed by the 20 Hz thread, and so is the potential queuing of the correlated event into theDisplay’s
rate group’s dispatch queue. Since all of these components also run at 20 Hz, the according events are now found
in the 20 Hz dispatch queue, and the 20 Hz thread will continue to execute. Assuming that theTacticalSteering
component is enabled, while theNavSteering component is disabled, the push method which handles the incoming
event for theNavSteering component simply ignores the event, while theTacticalSteering calls theAirFrame’s
facet to fetch the newly available data. Upon this call, theAirFrame itself fetches the data from theGPS, switches
to fresh-mode and returns the data. After receiving the updated values,TacticalSteering issues aDataAvailable
event itself. Its proxy now forwards this event to the correlator, which already is in a state indicating that the
AirFrame has already sent his event, so that now a correlated event is queued for theDisplay. Again in the 20 Hz
group this event is the last one in the queue executed by the thread. The thread runs the push method of theDisplay,
which calls the facet of theTacticalSteering and receives the new data, and calls the facet of theAirFrame, which
is in fresh-mode now so that it also immediately returns the new data. The data then is processed and displayed,
and the 20 Hz thread ends until the next 20 Hz timeout.

2.4.3 Behavioral Models of Cadena Assemblies

Representing component structure and connections Connections in current Bold Stroke systems are estab-
lished in an initialization phase, and then remain fixed throughout the lifetime of the system. This means that
although connection information must be represented, it does not need to be stored in the state vector. Similarly
the interpretation of Cadena models in Bogor can be seen as two phases: first a buildup phase establishes the static
part of the system in a single atomic step, then the connected system is checked over the state vector discussed
below.

The buildup phase begins with the creation of component instances followed by actions that connect the ports
of each instance to ports of other instances (in the case of facets/ receptacles) or the model of the real-time
event-channel (in the case of event source/sinks). Figure 14 shows how the BogorCAD extension supports the
buildup of data structures representing components. This extension (not shown) declares two new typesEvent
andComponent (which is used as the type of the BIRTacticalSteering variable). Further, the extension de-
fines a number of operations such ascreateComponent anddeclareEventSourcePort that are implemented
by Java methods in the extension. Note for example the use of thebindHandler operation which declares that
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CAD.Component TacticalSteering;
enum EnabledDisabled { ENABLED , DISABLED }
EnabledDisabled tacticalSteeringMode;

TacticalSteering := CAD.createComponent (" TacticalSteering ");
tacticalSteeringMode := EnabledDisabled.ENABLED;
CAD.declareEventSourcePort <EventType >( TacticalSteering ," outDataAvailable",
CAD.declareEventSinkPort <EventType >( TacticalSteering ," inDataAvailable",

EventType.DataAvailable );
CAD.createField <Data >( TacticalSteering , "ReadData.data ");
CAD.bindHandler <EventHandlerEnum >

(EventHandlerEnum.tacticalSteering_push_inDataAvailable ,TacticalSteering ,
"inDataAvailable ");

...
CAD.connectEvent(AirFrame , "outDataAvailable",

TacticalSteering , "inDataAvailable", 20, false);
...

function tacticalSteering_push_inDataAvailable(
EventHandlerEnum eh , CAD.Event event) {

Data dat;
loc loc0: live {}
when (onOff == EnabledDisabled.ENABLED) do { } goto loc1;
when !( onOff == EnabledDisabled.ENABLED) do { } return;

loc loc1: live {} invisible invoke airFrame_facet () goto loc2;
loc loc2: live{dat}
when true do {
dat := CAD.getField <Data >(AirFrame , "ReadData.data ");

} goto loc3;
loc loc3: live{}
when true do {
CAD.setField <Data >( TacticalSteering , "ReadData.data", dat);

} goto loc4;
loc loc4: live {}
invisible invoke pushOfProxy(TacticalSteering , "outDataAvailable", ...);
return;

}
...

Figure 14: Bogor component and assembly descriptions for ModalSP (excerpts)
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Queue.type <Pair.type <EventHandlerEnum , CAD.Event >> Q5;
...
Q5 := Queue.create <...>( MaxCapacity.QUEUE );
CAD.bindDispatchingQueue <...>(Q5, 5);
...
thread threadgroup5 () {
Pair.type <EventHandlerEnum , CAD.Event > pair;
EventHandlerEnum handler;
CAD.Event event;

loc loc0: live { handler , event } when Queue.size <... >(Q5) > 0
do invisible {
pair := Queue. getFront <... >(Q5);
Queue.dequeue <... >(Q5);
handler := Pair.first <... >( pair);
event := Pair.second <... >( pair);

} goto loc1;
loc loc1: live {}
invisible invoke virtual f(handler , event) goto loc0;

}

Figure 15: Bogor dispatch queue and thread model for ModalSP (excerpts)

the BIR function displayed at the bottom of Figure 14 is to be used as the event handler for events flowing into the
inDataAvailable port ofTacticalSteering.

Below the declaration of the component structure, Figure 14 illustrates the use of theconnectEvent method.
This action causes a Bogor reference to theinDataAvailable port of TacticalSteering to be added to the
subscriber list (recall the discussion of Figure 13 in Section 2.4.2) for theoutDataAvailable port ofAirFrame.

When implementing a Bogor extension, one must define astate managerthat walks over the extension’s state
and produces a representation suitable for placing in the model-checker’s state vector. This flexibility can be
leveraged in a variety of ways, e.g., to omit various fields from the data vector, to form abstractions of the state,
or to build canonical representations necessary for achieving symmetry reductions in the representations of sets
[RDH03]. In Cadena models, we use this mechanism to avoid storing the static connection information in the
state vector. This also allows us to increase the granularity of actions in initialization and in middleware actions
– thus, soundly reducing the number of interleavings. Moreover, traversal of subscriber lists can sometimes be
carried out atomically (depending on priorities of threads involved), since there is no chance of interfering updates
to subscriber lists once execution begins.

Representing component behavior Event handlers and other methods of CCM components are represented as
BIR functions. Figure 14 shows the BIR model of the event handler for theindataAvailable event sink from
Modal1 component type as defined in CPS definition of Figure 10. The transitions capture the handler behavior as
defined in the CPS file: if the component is disabled, the handler simply returns, otherwise it fetches data using its
dataIn port, updates its local data, and then publishes adataAvailable event on itsoutDataAvailable port.

In the example Bold Stroke systems supplied by Boeing, the concrete internal data of components consists
exclusively of the values of component mode variables (e. g. theenabled/ disabled values of mode variableonOff
from componentModal1, Figure 10). Boeing engineers abstract away the other data values such as the actual
numerical data produced by e. g. GPS devices. Thus, such values are represented by a BIR extension typeData (as
equivalently by the typeany in the CPS, Figure 10) that has a single dummy value. Using the state representation
mechanism introduced above, component fields of typeData are not held in the state vector. This means that
component models only contribute the values of mode variables to the state vector.

Representing the real-time event channel The BIR model of the real-time CORBA event service represents
the thread-pool, event dispatch queues, and correlators presented in Figure 13 of Section 2.4.2. Recall from
Section 2.4.2 that dispatch queues hold event/subscriber pairs(s,e). In the Bogor model, queues are modeled
usingQueue andPair extensions. Figure 15 illustrates the 5 hertz rate queue of pending event dispatches and the
thread,threadgroup5, that cyclically dequeues dispatch pairs and invokes the component event handler encoded in
each pair (note that pair type declarations are elided (i.e.,<...>) for improved readability).

Each correlator is represented as a deterministic finite-state automaton whose transition function is encoded as
a static transition table. For each correlator, there is a single state variable that holds the current correlator state.
Since the structure of correlators is fixed for a given system, the transition tables are not held in the state vector.
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Summary of data portion of state-vector To summarize the modeling strategy discussed above, we present the
state vector components related to data state of Cadena systems. Theobservable stateof a Cadena assembly is
comprised of all non-fixed system data. As we have noted above, correlator transition tables, subscriber lists, and
component connection information are all fixed and are not considered part of the observable state.

Definition 1 (Cadena Data States)are tuples(~c,~r,~a, t, p) where:

~c = (c1, . . . ,ck) stores the data states of component instances, each of which is comprised of a, possibly empty, set
of mode attributes as defined by ci ’s component type.

~r = (qr1, . . . ,qrn) are rate-specific queues of pairs,(c,e), recording the dispatch of event e to port c.

~a = (a1, . . . ,al ) stores the current states of each of the event correlation recognition automata.

t records an abstraction of time used to trigger timeouts.

p records the priority of the current thread being executed.

The initial state is defined to have instance modes set to their initial values, correlation automata set to their start
state, rate specific queues to be empty, t= 0, and the priority variable is set to the highest priority.

In addition, the values of local variables in component handlers and methods and in the implementation of
push methods and rate-specific threads cannot be observed outside their method activation by other threads or by
property observables and are also not considered part of the observable state. Local variableare held in the state
vector, but only during the corresponding method activations.

Strategies for modeling scheduling and time The behavior of Cadena systems is driven by the triggering of
middleware timeouts as described in Section 2.4.2 and is controlled by the scheduling policies of the thread-pool
in the real-time event channel. Finding an effective strategy for modeling these timeouts and thread-scheduling is
a central issue in the construction of Cadena models.

When analyzing concurrent systems, most model-checkers do not attempt to exploit knowledge of specific
timing or scheduling strategies but instead explore all possible interleavings of concurrent actions. If we followed
this approach, we would allow timeout events to occur non-deterministically between every system transition and
we would allow actions from different threads to be interleaved non-deterministically without consideration of
priorities or other scheduling constraints. While such a strategy issoundin that it covers all possible system
behaviors, the number of states generated makes it impractical for all but the smallest systems.

In the subsections below, we describe several strategies that we use to reduce infeasible interleavings. Each
strategy incorporates constraints based on observations about priority scheduling and timeout policies implemented
by the real-time middleware.

Priority-based scheduling: Having the model-checker non-deterministically explore interleavings without con-
sidering thread priorities obviously introduces schedules that are infeasible in the actual system, e.g., a
schedule that continues to execute transitions from a lower priority thread even though a higher-priority
thread is enabled.

Inter-rate-group timeout constraints: Having the model-checker non-deterministically generate timeout events
introduces schedules that are infeasible in the actual system, e.g., a 5 Hz timeout event should not occur more
frequently than a 20 Hz timeout event. We present strategies that reduce infeasible interleavings by taking
into account the appropriate relative frequency of timeout events, i.e., by taking into account constraints that
exist between timeouts of different rate groups.

Intra-rate-group timeout constraints: Having the model-checker non-deterministically generate timeout events
introduces infeasible schedules where a timeout for a rate groupr occurs before all events in the current
frame for r are dispatched or before the previous timeout from groupr is even dispatched. We constrain
the generation of time-out events to ensure that timeouts from the same rate group are not triggered “too
quickly”.
This strategy constrains the occurrence of timeouts by considering the relative lengths of the real-times
frames and constrains scheduling by considering priority information.
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Lazy-time with priority scheduling: In addition to the techniques used in the strategy above, this strategy also
considers timing estimates for system transition which allows additional infeasible schedules to be removed
from consideration.

Representing priority-based scheduling information Bold Stroke systems are priority scheduled based on the
results of rate monotonic analysis of a set of harmonic rate groups. TheCAD call connectEvent(), illustrated
in Figure 14, assigns a rate, and hence a priority, to each component handler for a given event. The default non-
deterministic scheduling policy in Bogor is implemented by a module that calculates the set of enabled transitions
in a given state and passes that set to the state exploration module, which explores each possible outgoing transition.
When reporting our experiments, we refer to models that use this strategy aspriority-unaware. For Cadena models,
a Bogor plugin is used that intercepts the set of enabled transitions in a given state, selects the transitions with the
highest priority and passes these transitions on to the state exploration module. As expected, this yields dramatic
reductions in the state space, as shown in Section 2.4.4, and also improves the precision of the state space since
only infeasible schedules are eliminated (i.e., ones on which a lower-priority transition executes when a higher-
priority transition is enabled). We refer to models that use this strategy aspriority aware. Variations of this plugin
are used in the following models to allow for interleaving of timeouts with the highest-priority enabled transition.

Representing intra-rate-group timing constraints The treatment of time,t, determines, in part, the fidelity of
the model with respect to the real system’s behaviors. If detailed timing information is available one can keep track
of time as component actions are executed and use that time value to trigger periodic events. However, even when
timing information is not available, one can still reduce the occurrence of timeout events based on both intra- and
inter-rate-group constraints.

Intra-rate-group constraints that we consider involve the notion offrame overrun. A frame overrun occurs when
a timeout eventer for rate groupr occurs before all eventse′ triggered directly or indirectly by the previous timeout
for r are processed by the rate group’s threadtr . In normal situations, a timeouter occurs and is dispatched, other
events arrive in the event channel’s dispatch queues (including those associated withr), and threadtr becomes idle
after all events associated withr have been dispatched. The time thattr remains idle waiting for the nextr timeout
is calledslack time. If a system has a frame overrun error, a threadtr has no slack time – it is unable to finish all of
its work before the next timeouter arrives.

Note that exploring the state-space of systems where arbitrary frame overruns are modeled results in a huge
number of additional system behaviors that would very likely be infeasible if actual timing data were considered
(timing data would allow us to conclude that in most cases frame overruns do not occur). While frame overruns are
a real source of bugs in Bold Stroke systems, engineers have other tools and methods for detecting these types of
errors. Accordingly, we will reduce the state space that we explore using two strategies. The first strategy which we
call no overruns assumes that no frame overruns occur at all. This is implemented by having the model-checker
scheduler only emit a timeout event for rate groupr if there are no enabled transitions associated with rate group
r – which models the situation wheretr has become idle. The second strategy which we calllimited overruns is
implemented by having the model-checker scheduler only emit a timeout eventer if there is no other timeout event
remaining in ther dispatch queue (but other non-timeout events may still be waiting in the queue for dispatch).
Intuitively, that this model includes overruns that only spill over into the very next frame but does not include
overruns where processing is ’late’ by more than one additional frame.

Representing inter-rate-group timing constraints The strategies related to frame overrun in the previous sec-
tion constrain timeout events by considering when they should occur relative to other timeouts from thesamerate
group. We now describe a strategy which we call therelative-time (RT) strategy that constrains the issuing of
timeout events by considering when a timeout forr should occur relative to a timeout for adifferentrate groupr ′.
Specifically, we take advantage of the fact that in rate-monotonic scheduling theory (which is used in Bold Stroke
systems), the frame associated with a rate can be evenly divided into some whole number ofr ′-frames for each
rater ′ that is higher thanr. In the example system of Figure 1, the frame of the slowest rate (1 Hz) can be divided
into 5 5 Hz frames, and each 5 Hz frame can be divided into 4 20 Hz frames. The longest frame/period (the frame
associated with the lowest rate) is called thehyper-period.

Therelative-time model enforces the following constraints related to issuing of timeouts:

• a single timeout is issued for the slowest rate group in the hyper-period,
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CAD.Component Timer;
...
Timer := CAD.createComponent (" Timer ");
CAD.declareEventSourcePort <EventType >(Timer ," timeOut5",EventType.TimeOut );
...
thread timerThread () {
loc loc0: live {}
when true do { time := (time + 1) % 20; } goto loc0;

}
...
thread timeOutSenderThread () {
...
loc loc1: // 5 Hz timeout case
when time % (20/5) == 0 do invisible { } goto locInvoke5;
when time % (20/5) != 0 do invisible { } goto loc2;
...

loc locInvoke5: live {localTime}
invisible invoke pushOfProxy(Timer , "timeOut5",

CAD.createEvent <EventType > (EventType.TimeOut ))
goto loc2;

...
loc loc2: // 1 Hz timeout case
...

}

Figure 16: Timer and TimeOutSender thread models for ModalSP (excerpts)
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Figure 17: Relative-time Environment

• timeouts for rate groups,r i andr j wherer i > r j , are issued such thatr i/r j timeouts of rater i are issued in a
r j frame.

These constraints determine the total number and relative ordering of instances of timeouts that may occur in the
hyper-period.

Figure 16 shows the Bogor code for two threads that are used to model this strategy. ThreadtimerThread
increments an abstraction of time where each ’tick’ (i.e., each increment of thetime variable) represents the
passing of time corresponding to the shortest frame in the system (e.g., in the ModalSP, each tick represents a
20 Hz frame). Thetime variable wraps around every 20 ticks which corresponds to the fact that there are 20 Hz
frames in the 1 Hz hyper-period. ThreadtimeOutSenderThread models the behavior of the rate-specific timer
threads in the middleware discussed in Section 2.4.2. This thread monitorstime and when it observes a change in
the time value, it passes through acase statement to see which timeout events should be dispatched at that point.
Since atime tick represents the period of the shortest frame, a new timeout event for the fastest rate is issued
on each pass through thecase statement. In our example system, the 5 Hz timeout happens every fourth tick. To
represent the occurrence of a timeout, the thread enqueues the timeout event through the standard push call.

From the explanation above, it is clear that theRT model only establishes the occurrence of timeouts relative
to each other – it does not relate timeout occurrences to the time required by component event handlers and method
execution. Thus, it is now important to understand when timeout actions may occur with respect to actions that
occur inside of component handlers, i.e., when can these actions be interrupted by timeouts.

To see that the model safely approximates all interleavings of timeouts and component actions (given the
constraint on no frame overruns) consider Figure 17. This figure illustrates four points during a system execution
which contains 5 Hz and 10 Hz rate processing. The 10 and 5 Hz timeouts are queued together (e.g., at the point 1)
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since they both have frames that begin at the same point. However, the 10 Hz timeout event is dispatched first due
to its higher priority. Once the all the actions associated with 10 Hz component processing complete (e.g., at point
2), the model-checker scheduler begins consideration of lower priority actions and the 5 Hz timeout is dispatched
leading to 5 Hz component processing. Ourno overruns assumption entails that processing the 10 Hz component
actions does not require more time than the period of the 10 Hz frame — thus, the next 10 Hz timeout cannot
occur before point 2. Since we are not modeling the actual time required for carrying out component actions, it
impossible to determine the relationship between the time required for 5 Hz component action processing (e.g., the
duration from point 2 to 4) and the time until the next 10 Hz timeout (e.g., the duration from point 2 to 3). To safely
cover all possibilities, we must allow for any relationship between these durations. To model all such relationships,
we adapt Bogor’s standard scheduling module to consider all interleavings of enabled timeouts with the enabled
transitions. On the right in Figure 17 the interleavings of the 10 Hz timeout and the enabled transitions performed
during 5 Hz component processing are illustrated. The first white circle represents the dispatching of the leftmost
10 Hz timeout event. This is followed by black circles representing transitions in 10 Hz component processing:
the first branch point represents the choice between the next 10 Hz timeout (on the left) or dispatching the already
queued 5 Hz timeout event (on the right). If 5 Hz processing is selected then the choice between the 10 Hz timeout
and 5 Hz processing repeats for the next enabled 5 Hz transition illustrated as a grey circle.

Lazily-Timed Components In the relative-time model, timeouts are arranged in a proper order and ratio with
respect to each other, but there are no constraints that guarantee that, e.g., the interval between time outs is appro-
priate for the correspond period. This means that the model may have interleavings in which a timeout, e.g., forr i ,
occurs prematurely with respect to an action sequence whose duration is less thanperiod(r i). For example, if the
5 Hz component processing (i.e., from point 2 to 4) in Figure 17 is guaranteed to be less than the time to the next
10 Hz timeout (i.e., point 4 comes before point 3) then the interleavings of 10 Hz timeouts with 5 Hz processing in
theRT model will be infeasible. Thelazily-timed (LT ) component model addresses this by leveraging worst-case
estimates of the running time of components; these will be available for Cadena systems to support rate monotonic
analysis. This model can be configured for whatever granularity of timing information is available. Here we con-
sider worst-case timing estimates for event handlers. Conceptually, the estimates are used to determine whether
a handler can run without interruption before the next timeout occurs and, if not, the model non-deterministically
interleaves action sequences from the handler with timeouts and higher-priority actions that follow from timeouts.

This model modifies the data associated with time to record the intra-hyper-period (IHP) time normalized by
the least common factor of all handler durations and timeout periods, the guards intimeOutSenderThread from
Figure 16 are adjusted accordingly, and each component handler is modified to include an increment of time.
Figure 18 illustrates how these increments are performed. It shows the execution of 5 Hz component processing
subsequent to completion of 10 Hz processing in a frame. There are two cases: (1) the worst-case time estimate of
the 5 Hz processing (i.e., which runs up to point 2) is less than or equal to the next timeout (i.e., timeout occurs at
point 3) or (2) it is not (i.e., timeout occurs at point 1 and interrupts the 5 Hz actions). In case (1), the IHP time
is incremented by the worst-case timing estimate of the currently running 5 Hz event handler and the state space
exploration algorithm proceeds; note that there is no branching in the state space for this case. In case (2), the
IHP time is incremented to the next timeout (i.e., point 1), a non-deterministically chosen prefix of the currently
running 5 Hz handler is executed, and then the 10 Hz timeout is performed. By choosing a prefix of the handler
actions, we are modeling all possible distributions of timing across the actions of the handler. The remaining
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portion of the handler is left for the state-space exploration algorithm after the 10 Hz timeout, and subsequent 10
hertz processing is performed. The difference between point 2 and point 1 (i.e., the worst-case execution time of
the handler remaining time of the 10 Hz frame) is assigned to that remaining portion as its duration.

This model can be seen as a refinement of theRT model. It eliminates interleavings when the timing estimates
guarantee that a group of highest-priority enabled transitions are guaranteed to complete before the next timeout.
In the example in Figure 17, if the right-most three light-grey circles correspond to a 5 Hz component handler
body whose worst-case execution bound is less than the time to the next 10 Hz timeout, then there would be no
branching in that portion of the state space (i.e., the lower two left outgoing arcs to 10 Hz timeouts are eliminated).

2.4.4 Experimental Results

Table 1 shows the results of evaluating our strategies using four example systems provided by Boeing engineers.
As an example of how to read to system description, theModalSP scenario that we have used as an example has
three threads (for rate groups 1 Hz, 5 Hz, and 20 Hz), 8 components, an event correlation (e/c), and 125 events
being generated per one second hyper-period (hp).

For each scenario, we give data for five models that incorporate the modeling strategies presented in the previ-
ous section.

• (R) is the reference model. There is no scheduling policy for the thread groups in the scenario (it ispri-
ority unaware and has no intra-rate-group timing constraints). Since a completely interleaved execution is
infeasible to check, therelative time constraints are used though.

• (RT-1) uses two policies:priority aware scheduling and therelative time environment where we implement
theno frame overrunsstrategy for the highest-priority thread only.

• (RT-2) is like (RT-1), but also assumes there areno frame overruns for all threads.

• (LT) is like (RT-2) but uses thelazy time environment model.

For each example, we collect the number of transitionstrans, states, time, and memory consumptionmemat
the end of the search. The numbers of transitions and states are both listed because some of steps in the model are
marked as invisible (atomic) for which Bogor will not save the states. The experiments were run on a Pentium 4
2.53 GHz with 1.5Gb RAM using the Java 2 Platform. Bogor’s collapse compression[Hol97b] and heap symmetry
[Ios02] and process symmetry [BDH02] reductions are used in all of the experiments. Each of the experiments
represents a complete exploration of the state-space of the system.

From the table, the state space generally decreases from model (R), (RT-1), (RT-2), to (LT). This shows that
by incorporating more knowledge (e.g., the scheduling policy) of the model that is being checked, less states need
to be explored. For example,Medium, the largest scenario that we have, cannot be model checked using Bogor
or our previous dSpin implementation [HDD+03] without employing the reduction strategies used in (RT-2) and
(LT). For Basicthe states are the same for model (RT-1) and (RT-2) because it only has a single thread (thus, there
is no interleaving). Model (R) has a larger number of states because the lack of constraints allows the timeout to
occur even when events associated with the current frame are still being dispatched. Model (LT) has two more
states than (RT-2) due to the overhead introduced by the timing transitions.

Bogor runs out of memory checkingModalSP(R) (at 3 million states) andMedium(RT-1) (at 13 million states).
It is interesting that the states forModalSP(R) require more memory than the states forMedium(RT-1). This is
an effect of the collapse compression that is used. Specifically, there are three threads inModalSP(R), but only
two threads inMedium(RT-1). In addition,ModalSP(R), which has fewer scheduling constraints, allows more
interleaving thanMedium(RT-1). Thus, the collapse compression can save more inMedium(RT-1) thanModalSP
(R), because there are more similar state bit patterns inMedium(RT-1) than inModalSP(R).

3 Model-Driven Optimization of Event Service Middleware

Distributed real-time embedded systems often involve a large number of components, distributed across several
processing nodes, interacting with one another in complex ways. Given the specification of a system, an important
part of the deployment phase is the implementation of the event and data connections between the components
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Example System (R) (RT-1) (RT-2) (LT)
Basic Scenario trans 111 42 42 44

Threads: 20Hz states 20 12 12 14
Components: 3 time .16 sec .11 sec .09 sec .11 sec
Events: 2 per .05sec hp mem .51Mb .5Mb .5Mb .51Mb

Multi-Rate Scenario trans 1.36M 7.5K .98K .15K
Threads: 20Hz, 40Hz states .12M 1.5K .1K 33
Components: 6 time 5 min 1.9 sec .38 sec .19 sec
Events: 6 per .05sec hp mem 16Mb .77Mb .61Mb .61Mb

ModalSP Scenario trans o.m. .92M 38.2K 6.27K
Threads: 1Hz, 5Hz, 20Hz states 3M+ 20.9K 9.1K 1.56K
Components: 8 (e/c) time o.m. 20 sec 8.59 sec 2.11 sec
Events: 125 per 1sec hp mem o.m. 4.1Mb 1.61Mb 1.45Mb

Medium Scenario trans o.m. o.m. 3.79M .36M
Threads: 1Hz, 20Hz states — 13M+ .74M 74.5K
Components: 50 time o.m. o.m. 29 min 3 min
Events: 820 per 1sec hp mem o.m. o.m. 71.8 Mb 21.5Mb

Table 1: Experiment Data
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via the underlying middleware services. The implementation must not only support the desired communication
semantics but also meet stringent performance goals of DRE systems. This may require using different customized
versions of a middleware service for different connections. For example, we have been studying the Boeing Bold-
Stroke System – a platform to develop avionics applications [Sha99], which uses the Tao’s Real-time event service
[HLS97] for event communication. BoldStroke developers have identified several special cases where specialized
configuration of the event service is preferred for performance optimization. Incorporating such specialized con-
figurations into the middleware manually can be a tedious task. Therefore, automated techniques are needed that
not only generate known specialized configurations but also generate new ones as optimization opportunities are
identified. Finally, to take advantage of customization, algorithms are needed that can analyze application’s usage
of middleware services to determine when to customize. Such analysis of high-level specifications can provide a
systematic way to identify middleware customization opportunities in large-scale DRE systems.

This section describes a FRAmework for Model-driven Event diStribution (FRAMES) for automated cus-
tomization of event communication middleware. As shown in Figure 19, our model-driven tool chain in FRAMES
starts with the application specifications in Cadena. In the configuration and deployment phase, the components,
which have been designed in isolation, have to be instantiated and then connected via appropriate middleware ser-
vices. This phase in Cadena is driven by XML metadata files, which contain information regarding the component
instances and their interconnections. From this metadata, Cadena configuration tools generate a system assembly
(java) file which contains the code to create the component servers, component homes, and the components. Once
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the components are created, we need to implement the event and data connections between them. At this point,
analysis algorithms in Cadena analyze the application scenarios to identify when customization may be applicable
and generate XML metadata. to generate customized push paths for event notifications using a combination of
code synthesis and weaving techniques. The combined use of analysis algorithms and configuration tools enables
a large class of possible customizations in the event communication middleware. In the following, we give a brief
overview of our approach:
• Integration of event service into OpenCCMCommunication via an event service is one of the event-communication
options available in FRAMES. We have developed Adaptive Event Service (AES), a JAVA based event service,
that can configured at deployment time. Furthermore, we have developed a scheme to use AES in OpenCCM
containers, whose architecture is shown in Figure 20. There are two main aspects of this architecture. First, in
the OpenCCM framework, it is possible to use AES as a stand alone CORBA service. In this case, a single event
channel is created and all containers interact with the channel via the ORB. This, however, is inefficient as every
notification will be a remote call via the ORB. Therefore, we adopted an architecture wherein an event cannel is
created in each component server as shown in Figure 20. The components on the same component server commu-
nicate via the local event channel (which is more efficient) whereas components on different component servers
communicate via gateways. We have developed an algorithm that uses the location information in the CAD file
to automatically generate the necessary configuration code to enable this federation of event channels. Second,
we want to allow the containers to use any Corba-based event service (such as FACET) at deployment time. To
address this issue, we follow a pluggable-module approach wherein each event service provides a plug-in interface
module with which the containers can interact (see module AESPlugin in Figure 20). This approach isolates the
containers from the specifics of the middleware services.
• Configurable Event Service Middleware: To enable model-driven customization, the middleware itself must
be amenable to customization. A push path for event notification from a producer to a consumer may use several
event channel features such as subscriber lists, correlation filters and distributed notifications. FRAMES allows
these features to be implemented at several places in the CCM code architecture; in the containers or as com-
ponents (in addition to the middleware level implementations), and these implementations can be used to obtain
light-weight push paths. These include the following:
1. Delivery mechanism: The possible delivery mechanisms areDirect DispatchandEvent Channel Dispatch. With
Direct Dispatch, the consumer list is maintained in the container of the producer. When an event is pushed by the
producer, the container consults this list and makes direct invocation on the consumers. With Event Channel Dis-
patch, all consumers and producers register with the Event Channel and the consumer lists are maintained in the
event channel.
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2. Remote Delivery Mechanism: The possible options areDirect Dispatch, Component-based Direct Dispatchand
Gatewaybased Event Channel Dispatch. This option is exercised when there are multiple remote consumers for
the same event. With Direct Dispatch (DD), the subscriber lists are maintained in the containers, and each consumer
is notified directly via a remote ORB call. With Component-based Direct Dispatch, a new component,called Gate-
way Component, is deployed in the server in which contains the multiple consumers. When an event is produced,
the producer notifies the GatewayComponent using a single remote ORB call, and the GatewayComponent, in
turn, notifies the consumers locally via local calls. The necessary subscriptions to perform this re-routing, and the
introduction of the GatewayComponent are done automatically by the configuration code. The Gateway-based
Event Channel Dispatch is similar to GatewayComponent approach but at the Event Channel level.
3. Correlation Implementation: The possible values areEvent Channel, Container, andComponent-correlation.
With Event Channel implementation, the correlation is done using the correlation support provided by the event
channel. With Container-based correlation (CCon), correlation is done by weaving in correlation code in the con-
sumer container. With Component-correlation (CCom), a new component, CorrelationComponent, is introduced
and correlation filter is embedded inside it. This component subscribes to the input events for the correlation ex-
pression and produces the events for the consumers. The necessary subscriptions to perform this re-routing, and
the introduction of the GatewayComponent are done automatically by the configuration code.
FRAMES exposes these different mechanisms as configurable XML metadata options to the application; that is,
an application configures the FRAMES via XML metadata specifying the mechanisms to be used for each event
connection.
• Analysis and Customization Tools: The form-view in Cadena provides each of the options discussed above
as selectable options. Although the user can select these options manually, there are several constraints that have
to be observed. First, there are some dependencies between the options: For example, if container correlation
is selected then the delivery mechanism must be direct dispatching. Some of these constraints are dependent on
the underlying CCM implementation. Furthermore, the relative performance of the different options also depends
on the underlying implementation. To isolate the designer from such concerns, FRAMES provides ananalysis
algorithm that selects these options automatically. The analysis algorithm uses performance heuristics collected
through platform-specific exhaustive testing (discussed below). The algorithms take as input, the system scenario
and platform information. In the first pass, the algorithm determines the fan-in and fan-out of the event connec-
tions in the system. In the second pass, it analyzes this information and validates it against a set of heuristics to
determine the optimal distribution strategy or correlation strategy. This results in selection of the best possible set
of options for each event connection. Once the options are selected, Cadena tools generate the necessary metadata
and code to introduce any new components, and rewiring of the connections.We have developed configuration
tools that performs these actions via a combination of code synthesis, weaving and transformation techniques. For
example, to implement correlation in the containers, we synthesize the filter code for the correlation expression,
which is then woven into the container code. We use the AspectJ framework for code weaving [KLM+97] whereas
the code synthesis is pattern-driven. This step does not involve any participation or actions from the designer.
• Experiments to derive optimization heuristics: An important part of the customization framework is to deter-
mine when to customize. We have conducted a number of experiments evaluating the relative performance of the
mechanisms in FRAMES to determine the application contexts/usage in which each mechanism performs better
than the others. These have resulted in a set of heuristics which have been inducted into analysis algorithms that
analyze an application’s event communication structure to identify the best possible mechanism for each event
connection. In the following, we give some examples of these experiments. Figure 21 gives the performance of
the direct-dispatching (DD) vs gateway-based implementation (in these experiments, OpenCCM creates separate
JVMs for each component server, and hence, method calls between component servers are remote calls). As can be
seen, for small number of consumers, DD performs better and should be the preferred mechanism. However, as the
number of consumers increase, there is a cross-over point at which the gateway-based implementation performs
better. This happens because in the gateway scheme, there is only one notification across the server boundary,
and the additional cost per consumer is that of a local notification. Figure 22 gives the results of an experiment
comparing the performance of the three schemes. The experiment involves varying number of consumers for the
same correlated event, and we measure the average time taken to perform correlation, starting at the time at which
the first input event is published and ending when all consumers of the correlated event are notified. As can be
seen,CComwith DD performs better thanAESin all cases. For small number of consumers, theCConscheme
performs better thanCCom(sinceCComhas the overhead of an additional component in the push path). However,
in CCon, each consumer performs correlation independently for the same expression whereas inCCom, correlation
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is performed once in the correlator component. Hence, as the number of consumers increase, there is a cross-over
point at whichCComperforms better.
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4 Summary of Project Results and Impact

4.1 PCES OEP Related Results

The PCES Avionics Open Experimental Platform developed by the Boeing PCES OEP team formed the primary
vehicle for our research to demonstrate the effectiveness of technologies that the KSU team developed under PCES.
The Avionics OEP presented a an idealized development setting and highlighted challenge problems from Boeing’s
Bold Stroke mission control software program.

The overarching vision that drove our activities on the avionics OEP centered around providing support for
capturing and reasoning automatically about dependency and behavioral information present in design artifacts
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(such as UML collaboration diagrams) that describe OEP scenarios and XML configuration files.
As noted in the MoBIES/PCES Challenge Problems document, the baseline Boeing current development pro-

cess,

• did not utilize any automated design-time support for reasoning about event/invocation dependencies and
high-level behavior, and

• did not include a formal link between UML artifacts (e.g., the sequence and collaboration diagrams that are
currently used for documentation in Bold Stroke development) and system configuration information (e.g.,
as presented in the XML configuration file) or actual component code.

Avionics OEP documents and personnel emphasize repeatedly that providing effective and scalable support
for the items above would represent a significant advance for Bold Stroke development. For example, automated
visualization/reasoning for dependencies can be used to detect multiple forms of design errors as well as drive
important design decisions (e.g., assignment of components to rate groups).

Section 2 summarizes our efforts to provide a collection of tools that enables designers to reason about com-
ponent dependencies and high-level system behavior, use partial dependency information to guide other design
decisions (e.g., regarding distribution, rate group assignments), and automatically generate configuration infor-
mation (e.g., in the form of existing XML configuration files) from high-level modeling artifacts (e.g., UML
sequence/collaboration diagrams).

We were able to successfully demonstrate success in each of these areas when applied to the scenarios dis-
tributed in the OEP. Success was demonstrated by showing significant improvements according to bothprocess
metrics(which captured time/effort required to develop and debug systems) andperformance metrics(which cap-
ture time and adherence to quality-of-service requirements) in the execution of the system.

For example, for process metrics in the MediumSP OEP example, we were able to make the following im-
provements to the baseline

• Task of Rate Seeding (assigning priorities to event handlers): 2 hours (baseline) to less than 8 seconds in
Cadena

• Task of ERM detection (CORBA co-location optimization detection): 1.5 hours (baseline) to less than 8
seconds in Cadena

• Checking for absence of “event cycle” defect: 3 hours (baseline) to less than 8 seconds in Cadena

Overall, Boeing OEP engineers gave high marks to Cadena throughout the PCES program, which led to Cadena
being chosen as the design tool to be used in the RT-Java portion of the PCES Capstone Demo (led by Ed Pla from
Boeing).

4.2 Lockheed Martin / Vanderbilt / Kansas State collaboration

PCES teams from Lockheed Martin (Eagan), Vanderbilt University, and Kansas State University participated in an
effort to demonstrate the effectiveness of model-driven development for development contexts and applications of
interest to Lockheed Martin. Collaborative efforts centered around integrating KSU’s Cadena MDD framework
with VU’s MDD Cosmic framework and using these to drive development of component-based system built on top
of the CIAO CCM C++ middleware implementation from VU.

This integrated tool collection was used to construct small-scale component-based systems representative of
the types of systems of interest to Lockheed Martin. Development of these smaller systems served several purposes
including debugging of the individual tool component and the information exchange formats used to communicate
between the tools, evaluating different features of the individual frameworks, and forming a coherent view of
end-to-end evaluation using MDD technology as represented by the integrated tool framework.

Building on the progress made on the smaller scale systems, engineers at Lockheed Martin (Dallas) working
on the mission control software for the Highly Mobile Artillary Rocket System (HIMARS) used the integrated tool
framework with to experiment with re-engineering HIMARS software to incorporate component technology.
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4.3 PCES Capstone Demo Participation

The PCES Capstone Demo aimed to demonstrate that effectiveness of adapative quality-of-service middleware
developed on the PCES project along with PCES model-driven development tools. One component of the project
focused on demonstrating the viability of RT-Java technology. The RT-Java portion of the demo was led by Ed Pla
from Boeing Phantom Works and included teams from Purdue (who provided the RT-Java VM) and Washington
University. The RT-Java team was tasked with building the mission control software for two Scan Eagle UAVs
using a RT-Java version of Boeing’s PRiSM component middleware.

Due to its unique combination of design and analysis capabilities, Cadena was chosen as the MDD tool for the
RT-Java portion of the project. Cadena was used by Ed Bla and other RT-Java team participants to design com-
ponent interfaces, assemble components instances into systems, debug system scenarios, and generate deployment
and configuration scripts for the underlying component middleware framework.

4.4 Kansas State / Rockwell Collins Interaction

Rockwell Collins Advanced Technology Center (RC ATC) was subcontracted to KSU during PCES Phase II to
assess model-driven development techniques developed by KSU in the context of applications of importance to
Rockwell Collins. Furthermore, RC ATC engineers developed a framework for middleware specialization for the
purpose of reducing latencies and footprint of middleware for embedded systems by performing optimizing based
on specific information about applications running on the middleware.

Like many other companies developing military relevant systems, Rockwell Collins finds high assurance (HA),
distributed, real-time, embedded systems (DRE) are amongst the most challenging of software systems to develop
and maintain. In contrast to more mainstream, desktop and business applications, HA-DRE software systems must
meet stringent performance, space, certification, and safety constraints. Although RC would like to be able to use
commercial off the shelf software (COTS) and open source software in RC systems, it is difficult to adapt more
mainstream software to RC needs, both for HA-DRE systems in general, and to meet the demands of specific
applications and missions.

As a result, RC is interested in investigating programming environments and infrastructure like Cadena that are
targeted directly to the specific requirements of HA-DRE systems.

Rockwell-Collins and Kansas State University have been working together for several years exploring the
requirements and possible technology solutions for automated software development tools that would allow us to
more effectively develop, maintain, and evolve HA-DRE systems. In particular, we have focused on assessing
how OMG-compliant middleware and component technology can be adapted to the HA-DRE domain because
middleware is increasingly finding its way into the types of systems we build (both military and comercial), and
because middleware may be a key integration technology in future multi-vendor avionics systems. Specifically,
Rockwell Collins has a number of large programs that could use this technology. The Joint Tactical Radio System
OTRS) program, for instance, is intended to provide a family of software-programmable, hardwareconfigurable
digital radio systems that can take advantage of rapid changes in commercial technology while meeting the varied
needs of the U.S. armed forces, NATO, and civilian applications.

Rockwell-Collins has been prominent in all steps of JTRS development, is a member of the Modular Software
Radio Consortium that developed the JTRS Software Communication Architecture (SCA), successfully teamed
with Boeing to win the Cluster 1 contract, has developed a large number of waveform applications for JTRS, and
is responsible for the evolution and OMG standardization of the SCA architecture under a contract to the JTRS
Joint Program Office OPO). Rockwell Collins is also in competition for a number of future awards. This work
is particularly relevant since it requires the customization of the SCA and underlying middleware infrastructure
to meet the requirements of a wide variety of computing platforms upon which JTRS software will be deployed.
These include the types of low-power, low-overhead platforms needed for future, ”smart” weapons systems, plus
a number of other types of JTRS systems. In addition to JTRS, Rockwell-Collins is also exploring the use of
middleware and component technology in commercial aviation systems.

Given this context, the KSU / RC ATC made significant progress on evaluating the suitability of Cadena for
addressing a number of the challenges described above. In particular, we sought to investigate the extent to which
general purpose component models such as those used in JTRS could be refined to more specific models that
capture the resource constraints for particular platforms.

Other aspects of the work sought to address the problem that most middleware frameworks in existence are
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Figure 23: OEP MediumSP Scenario

general-purpose frameworks which provide many services and features which are not necessary for our domain.
Performance optimizations, for example, seem to be most effective when based on a knowledge of the specific
application or mission, which suggests a focus on “features” that cut through the layers of a software architecture.
Thus, the strategies KSU / RC ATC developed for using analysis to direct optimizations of underlying middleware
and services based on application information seems particularly promising.

We continue interact with RC ATC engineers in work that builds on the PCES efforts described above.

4.4.1 Experiments using FRAMES for OEP MediumSP Scenario

The effectiveness of FRAMES was demonstrated using various scenarios from the OEP. This section describes the
results of experiments with the MediumSP scenario shown in Figure 23. For this scenario, the FRAMES analysis
algorithm determines the fan-in and fan-out values of the components. For block (1) shown in the scenario, the
values are as follows:

Component name Component Type Fan-in Fan-out
GPS BM Device 1 1
INS BM Device 1 1
ADC BM Device 1 1

Radar1 BM LazyActive 4 2
AirFrame BM Display 1 1

The heuristics for the OpenORB-OpenCCM platform (derived from experiments conducted on this platform) sug-
gests, based on the above table, that a direct dispatching strategy is optimal in this case because each event is
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Figure 24: Performance comparison for MediumSP Scenario

consumed by a single consumer and the overhead of the full event channel can be avoided. Hence these events will
be tagged as Direct-dispatch. However, in this case, the events to AirFrame are correlated. With direct dispatch-
ing as a delivery option, FRAMES algorithms analyze the correlation to determine that the best place to correlate
these events would be in the container of AirFrame. Traditionally such events (i.e. involved in correlation) would
have been passed through the full Event Channel. However, since AirFrame is the only consumer of that event
and Direct-dispatch is traditionally less expensive than an event channel notification, FRAMES opts for container
correlation.

Now consider block (2). Track components receive events from the various sensors and compute the current
track. However, there is a significant reuse of the correlated events from the same set of sensors. Similarly, Track5,
Track8 and Track10 receive events from TrackSensor3 and TrackSensor4. In this case, if container correlation
were to be picked, the same correlation would need to be done at the container of several components. Considering
all this information, FRAMES determines that in this case the Event Channel might be a better place to perform
correlation. Connections in block (3) are similar to block (1), i.e. there is exactly one consumer of the correlated
event and hence the best strategy would be to use Direct-Dispatch or ERM with Container correlation.

A sample run of this scenario compared with the other options is shown in Figure 24. Bar-1 indicates the
time taken for 1000 pushes when all events are passed through the Event Channel, with Correlation happening
only in the Event Channel. Bar-2 shows the time taken when additional components are added to the system to
perform correlation. Bar-3 is the time taken when all events are direct dispatched and correlated at the consumer’s
containers. There is a significant difference because, as per the earlier discussion, there are a significant number of
correlations reused in block-2 of MediumSP(Appendix-A), which increases the overhead. Finally, Bar-4 shows the
time taken when FRAMES annotates the scenario accordingly. Clearly, for much larger scenarios we can exploit
information that adds up to better system performance and predictability.
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to Software Engineering (FASE’05)Edinburg, Scotland, April 2005, Lecture Notes in Computer Science
(3442), pp. 269–272.

• “Building Your Own Software Model Checker Using The Bogor Extensible Model Checking Framework”,
Matthew B. Dwyer, John Hatcliff, Matthew Hoosier, Robby.Proceedings of 17th Conference on Computer-
Aided Verification (CAV 2005), Edinburgh, Scotland, July 2005, Lecture Notes in Computer Science (3576),
pp. 148–152.

• “Extending JML for Modular Specification and Verification of Multi-Threaded Programs”, Edwin Rodrı́guez,
Matthew B. Dwyer, Cormac Flanagan, John Hatcliff, Gary T. Leavens, Robby.Proceedings of 19th Euro-
pean Conference on Object-Oriented Programming (ECOOP 2005), Glasgow, Scotland, July 2005, Lecture
Notes in Computer Science (3586), pp. 148–152.

• “An Integrated Model-Driven Development Environment for Composing and Validating Distributed Real-
Time and Embedded Systems”, Gabriele Trombetti, Aniruddha Gokhale, Douglas C. Schmidt, Jesse Green-
wald, John Hatcliff, Georg Jung, Gurdip Singh, InModel-Driven Software Development, Beydeda, Sami;
Book, Matthias; Gruhn, Volker (Eds.) 2005, ISBN: 3-540-25613-X, pp. 329–362.

• “Analyzing Interaction Orderings with Model Checking”, April 2004. Matthew B. Dwyer, Robby, Oksana
Tkachuk, Willem Visser. In the Proceedings of the Nineteenth IEEE International Conference on Automated
Software Engineering (ASE 2004).

• “Adaptive Event Communication in Component-based Systems”, Q.Zeng, P. Shanti Kumar and G. Singh,
3rd Workhop on Reflective and Adaptive Middleware, Oct 2004, pp 201-206

• “Synchronization in CAN-based Embedded Systems”, Y.Su and G. Singh,Embedded Systems and Applica-
tion Conference, June 2004

• “Configurable Event Communication in Cadena”, G. Singh, P. Kumar, and Q. Zeng,IEEE Real-time and
Application Symposium, May 2004, pp 130-138

• “Exploiting Object Escape and Locking Information in Partial Order Reductions for Concurrent Object-
Oriented Programs”, Matthew Dwyer, John Hatcliff, Venkatesh Ranganath, and Robby, Journal of Formal
Methods in System Design, 25(2), Sep 2004, pp. 199-240.

• “A Priority Inheritance-based Inversion Control Methodology for General Resource Access Problems”, Li-
ubo Chen, Masaaki Mizuno, and Gurdip Singh,Proceedings of IEEE Real-Time and Embedded Technology
and Applications Symposium, 2004, pp. 202-210

• “A Structured Approach to Develop Concurrent Programs for a Thread-Pool Model,” Liubo Chen and
Masaaki Mizuno,Proceedings of Parallel and Distributed Computing and Systems, 2004
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• “Translating Java for Multiple Model Checkers: the Bandera Back-End”, Radu Iosif, Matthew Dwyer, and
John Hatcliff, to appear in Formal Methods in System Design, 2004.

• Proceedings of the Ninth Annual Conference on Tools and Algorithms for the Construction and Analysis
of Systems (TACAS 2003), Hubert Garavel and John Hatcliff (editors) Lecture Notes in Computer Science
(LNCS) 2619, Springer-Verlag, 2003.

• “Model-driven Design and Implementation of Distributed Real-time Embedded Systems in Cadena”, G.
Singh, J. Hatcliff, M. Dwyer, V. Ranganath, X. Deng, P. Kumar, and Q. Zeng,OMG Workshop on Distributed
Object Computing for Real-time and Embedded Systems, July 2003.

• “Expressing Checkable Properties of Dynamic Systems: The Bandera Specification Language”, James Cor-
bett, Matthew Dwyer, John Hatcliff, Robby.Journal of Software Tools for Technology Transfer, 4(1):34-56,
2002. Springer-Verlag

• “Checking Strong Specifications Using an Extensible Software Model-checking Framework”, Robby, Edwin
Rodriguez, Matthew Dwyer, and John Hatcliff,Proceedings of the International Conference on Tools and
Algorithms for Construction and Analysis of Systems, April, 2004. Lecture Notes in Computer Science
(2988), pp. 404–420.

• “SyncGen : An Aspect-oriented Framework for Automatically Generating Synchronization Implementations
from High-level Specifications” John Hatcliff, William Deng, Matthew Dwyer, Masaaki Mizuno,Proceed-
ings of the International Conference on Tool and Algorithms for Construction and Analysis of Systems, April,
2004. Lecture Notes in Computer Science (2988), pp. 158–162.

• “An Event Correlation Framework for the CORBA Component Model”, Georg Jung, John Hatcliff, and
Venkatesh Ranganath,Proceedings of the International Conference on Fundamental Aspects of Software
Engineering, April, 2004. Lecture Notes in Computer Science (2984), pp. 144–159.

• “Cadena : An Integrated Development Environment for Analysis, Synthesis, and Verification of Component-
based Systems”, Adam Childs, Jesse Greenwald, Venkatesh Ranganath, Xinhua Deng, Matthew Dwyer, John
Hatcliff, Georg Jung, Prashant Shanti Kumar, Gurdip Singh,Proceedings of the International Conference
on Fundamental Aspects of Software Engineering, April, 2004. Lecture Notes in Computer Science (2984),
pp. 160–164.

• “Pruning Interference and Ready Dependence the Slicing Concurrent Java Programs”, Venkatesh Ranganath
and John Hatcliff,Proceedings of the International Conference on Compiler Construction, April, 2004.
Lecture Notes in Computer Science (2985), pp. 39–56.

• “A Flexible Framework for the Estimation of Coverage Metrics in Explicit State Software Model Checking”,
Edwin Rodŕıguez, Matthew B. Dwyer, John Hatcliff, Robby.Proceedings of the 2004 International Work-
shop on Construction and Analysis of Safe, Secure, and Interoperable Smart Devices (CASSIS 2004), June
2004. Lecture Notes in Computer Science.

• “Verifying Atomicity Specifications for Concurrent Object-Oriented Software using Model-Checking”, John
Hatcliff, Robby, and Matthew Dwyer,Proceedings of the 5th International Conference on Verification,
Model Checking and Abstract Interpretation, Venice, Italy. January, 2004.

• “Space Reductions for Model Checking Quasi-cyclic Systems”, Matthew Dwyer, Robby, John Hatcliff, and
Xinhua Deng,Proceedings of the 3rd International Conference on Embedded Software(EMSOFT 2003),
Lecture Notes in Computer Science, Springer-Verlag, Oct., 2003.

• “Bogor: An Extensible and Highly-Modular Model Checking Framework”, Robby, Matthew B. Dwyer,
John Hatcliff.Proceedings of the 2003 ACM Conference on Foundations of Software Engineering. Helsinki,
Finland, September 2003.

• ”Space-Reduction Strategies for Model Checking Dynamic Software”, Robby, Matthew Dwyer, John Hat-
cliff, and Radu Iosif in Proceedings of the 2nd Workshop on Software Model Checking, Electronic Notes in
Computer Science, 89.3, June, 2003
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• “Model-checking Middleware-based Event-driven Real-time Embedded Software”, William Deng, Matthew
B. Dwyer, John Hatcliff, Georg Jung, Robby, Gurdip Singh.Proceedings of the 2002 International Confer-
ence on Formal Methods for Components and Objects (FMCO 2002). Leiden, The Netherlands, November
2002 (invited paper).

• “Slicing and Partial Evaluation of CORBA Component Model Designs for Avionics Systems”, John Hatcliff,
William Deng, Matthew Dwyer, Georg Jung, Venkatesh Ranganath, and Robby in Proceedings of the 2003
ACM SIGPLAN workshop on Partial evaluation and semantics-based program manipulation, June, 2003.

• “Cadena: An Integrated Development, Analysis, and Verification Environment for Component-based Sys-
tems”, John Hatcliff, William Deng, Matthew Dwyer, Georg Jung, Venkatesh Prasad.Proceedings of the
International Conference on Software Engineering (ICSE 2003). IEEE Press. Portland, Oregon, May 2003.

• “Invariant-based Specification, Synthesis, and Verification of Synchronization in Concurrent Programs”,
Xianghua Deng, Matthew B. Dwyer, John Hatcliff, and Masaaki Mizuno.Proceedings of International
Conference on Software Engineering (ICSE 2002), IEEE Press, May 2002.

• “Enhancing Real-Time Event Service for Synchronization in Object Oriented Distributed Systems” ,G.
Singh, B. Maddula and Q. Zeng,IEEE International Symposium on Object-oriented Real-time Distributed
Computing, April 2002, pp 233-240

• “Using the Bandera Tool Set to Model-check Properties of Concurrent Java Software”, John Hatcliff and
Matthew Dwyer.Proceedings of 12th International Conference on Concurrency Theory (CONCUR 2001),
August 2001, LNCS 2154, Springer-Verlag, pp. 39 – 58 (invited paper).

• “Tool-supported Program Abstraction for Finite-state Verification”, Matthew Dwyer, John Hatcliff, Corina
Pasareanu, Robby, Willem Visser, Hongjun Zheng.Proceedings of the Internation Conference on Software
Engineering (ICSE 2001), May 2001, IEEE Press.

• “Foundations of the Bandera Abstraction Tools”, John Hatcliff, Matthew B. Dwyer, Corina S.Puasuareanu,
Robby. pp. 172 – 203. In ”The Essence of Computation – Essays dedicted to Neil Jones”. Lecture Notes in
Computer Science 2566. Editors: Torben Mogensen, Hal Sudborough, Dave Schmidt
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6 Invited Talks describing PCES-funded Work

• Programming Language Design and Implementation (PLDI 2005). Half-day tutorial on “Domain-specific
model-checking with Bogor.” (John Hatcliff, Robby). Chicago, USA, June 2005.

• Estonian Summer School in Computer and System Science (ESSCaSS), August 2004 (John Hatcliff) (one
of four invited lectures – 6 hours of lectures on Analysis and Verification of Embedded Software).

• European Joint Conferences on Theory and Practice of Software (ETAPS 2004). Half-day tutorial on
“Model-checking Software Systems with Bogor.” (John Hatcliff and Robby). Barcelona, Spain, April 2004.

• 2003 Workshop on Specification and Verification of Component-Based Systems, Helsinki, Finland.

• ACM SIGPLAN Symposium on Partial Evaluation and Program Manipulation (PEPM 2003) (John Hatcliff)
(one of two keynote speakers).

• 2002 ACM Foundations of Software Engineering (FSE 2002). “Model-checking Concurrent Java Software
with the Bandera Tool Set” (Matt Dwyer).

• International Symposium on Formal Methods for Components, Objects, and their Implementation (FMCO
2002). (John Hatcliff) Leiden, The Netherlands, November, 2002. (one of fifteen invited research talks)

• Schools on Formal Methods (SFM). September, 2002, Bertino, Italy. ”Software Model-checking”. (John
Hatcliff) (invited three hour lecture – one of eleven invited lecturers for a one-week international Ph.D.
school)

• European Joint Conferences on Theory and Practice of Software (ETAPS 2002). Full-day tutorial on “The
Bandera Tool Set for Model-checking Concurrent Java Programs”. (John Hatcliff, Matt Dwyer, and Willem
Visser (NASA Ames))

• International Conference on Mathematical Foundations of Programming Language Semantics (MFPS’02).
March, 2002, New Orleans, LA. ”Model-checking Concurrent Java Software Using the Bandera Tool Set”
(John Hatcliff) (one of six key-note talks)

• CONCUR 2001: 12th International Conference on Concurrency Theory, Aalborg, Denmark, August 2001.
(John Hatcliff) (one of two invited 1.5 hour tutorials)

• JavaCard Verification Project Meeting, August, 2001. INRIA, France. ”Model-checking Concurrent Java
Software Using the Bandera Tool Set” (John Hatcliff) (invited talk)

7 Software and Other Deliverables

7.1 Cadena

URL: http://cadena.projects.cis.ksu.edu/

The use of component models such as Enterprise Java Beans and the CORBA Component Model (CCM) in
application development is expanding rapidly. Even in real-time safety/mission-critical domains, component-based
development is beginning to take hold as a mechanism for incorporating non-functional aspects such as real-time,
quality-of-service, and distribution.

To form an effective basis for the development of such systems, we have built Cadena—an integrated environ-
ment for building and modeling CCM systems. Cadena provides the following capabilities:

• A collection of light-weight specification forms that can be attached to CCM’s component Interface Defi-
nition Language (IDL) to specify mode variable domains, intra-component dependencies, and component
state-transition semantics. These forms have a natural refinement order so that useful feedback can be ob-
tained with little annotation effort, and increasing the precision of annotation yields more precise analysis. In
addition, Cadena specifications allow developers to specify the same information in different ways, achiev-
ing a form of checkable redundancy that is useful for exposing design flaws.
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• Dependency analysis capabilities allow tracing inter/intra-component event and data dependencies, as well
as algorithms for synthesizing dependency-based real-time and distribution aspect information.

• A component assembly framework supporting a variety of visualization and programming tools for devel-
oping component connections.

• Integration with both C++ and Java CCM implementations including CIAO (a C++ implementation built on
top of the ACE/TAO real-time CORBA implementation) and OpenCCM (a Java implementation that runs
on top of a number of open source Java ORBs).

• A novel model-checking infrastructure dedicated to event-based inter-component communication via real-
time middleware enables system design models (derived from CCM IDL, component-assembly descriptions
and annotations) to be model-checked for global system properties.

• Java component stub and skeleton code generated using the CCM IDL compilers of OpenCCM or CIAO.

The Cadena tools are implemented as plug-ins to IBM’s Eclipse IDE. This provides an end-to-end integrated
development environment for CCM-based Java systems moving from editing of component definitions and con-
nections information to editing and debugging of auto-generated code templates.

Cadena is currently being used by research engineers at several companies including Boeing and Lockheed-
Martin to demonstrate the effectiveness of model-driven component-based product-line development for avionics
and command-and-control systems. We are actively collaborating with researchers at the University of Vanderbilt
(developers of CIAO) to more effectively support model-driven development of distributed real-time embedded
systems.

7.2 Bogor

URL: http://bogor.projects.cis.ksu.edu/

Modern computing applications increasingly require concurrent/distributed software systems that are extremely
reliable. Unfortunately, current software validation techniques, such as inspections and testing, are failing to
provide high levels of assurance of correctness for these systems due to system size and complexity as well as
the fundamental difficulties of reasoning about state/event sequences in concurrent behavior. Model-checking
techniques (now widely used for hardware verification) hold promise for establishing crucial behavioral properties
of complex software because they can automatically check to see if an abstract finite-state transition system model
of the software conforms to a given state/event sequence property. If the model fails to satisfy the property, the
model-checker gives a counterexample — a path through the model’s transitions that violates the property. This
can be used to locate and correct the corresponding software defect. Essentially, model checking performs an
exhaustive simulation that captures the behavior of all possible thread interleavings in the system model being
analyzed.

The promise of model checking technology for finding defects due to unanticipated interleavings in highly
concurrent systems has led a number of international corporations and government research labs such as Microsoft,
IBM, Lucent, NEC, NASA, and Jet Propulsion Laboratories (JPL) to fund their own software model checking
projects. We believe that there are a number of trends both in the requirements of computing systems and in
the processes by which they are developed that will drive persons and organizations interested in applying model
checking technology to rely increasingly on customization/adaptation of existing tool frameworks or construction
of new model checking tools tailored to particular domains. Moreover, past experience has shown that software
model checking engines need to provide direct support for features of modern programming languages in order to
effectively deal with software systems.

To address these trends, we have built Bogor – an extensible software model checking framework with state
of the art software model checking algorithms, visualizations, and user interface designed to support both general
purpose and domain-specific software model checking. Although there are many model checkers available, Bogor
provides a number novel capabilities that make it especially well-suited for checking properties of a variety of
modern software artifacts, for building domain-specific model checking engines, and for supporting teaching of
model checking concepts.
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• Direct support of features found in concurrent object-oriented languages such as dynamic creation of threads
and objects, object inheritance, virtual methods, exceptions, garbage collection, etc.

• Bogor’s modeling language can be extended with new primitive types, expressions, and commands associ-
ated with a particular domain (e.g, multi-agent systems, avionics, security protocols, etc.) and a particular
level of abstraction (e.g., design models, source code, byte code, etc.).

• Bogor’s open architecture and well-organized module facility allows new algorithms (e.g., for state-space ex-
ploration, state storage, etc) and new optimizations (e.g., heuristic search strategies, domain-specific schedul-
ing, etc.) to be easily swapped in to replace Bogor’s default model checking algorithms.

• Bogor has a robust feature-rich graphical interface implemented as a plug-in for Eclipse – an open source
and extensible universal tool platform from IBM. This user interface provides mechanisms for collecting
and naming different Bogor configurations, specification property collections, and a variety of visualization
and navigation facilities.

• Bogor is an excellent pedagogical vehicle for teaching foundations and applications of model checking
because it allows students to see clean implementations of basic model checking algorithms and to easily
enhance and extend these algorithms in course projects.

In short, Bogor aims to be not only a robust and feature-rich software model checking tool that handles the
language constructs found in modern large-scale software system designs and implementations, it also aims to be
a model checking framework that enables researchers and engineers to create families of domain-specific model
checking engines. Bogor is currently being used in a number of research projects outside of Kansas State includ-
ing University of Massachusetts-Amherst, University of Nebraska-Lincoln, Brigham Young University, Queens
University, and EPFL. Bogor has been downloaded over 1600 times since July 2003.

7.3 Indus

URL: http://indus.projects.cis.ksu.edu/

Many Java analysis, visualization, and verification tasks require the compile-time computation of a variety of
forms of data flow and control flow properties that correctly capture important information about a program’s be-
havior at run-time. Indus is a flexible static analysis framework that provides a variety of forms of flow analyses for
Java including a generic data flow analysis framework for inter-procedural analysis of concurrent Java programs,
object-flow/aliasing/points-to analyses for constructing precise call-graphs and thread-graphs, escape analysis to
detect when heap-allocated objects remain local to a particular method or thread, lock/monitor analyses, and anal-
yses that detect and record various forms of dependence between program elements such as data dependence,
control dependence, and dependences between threads.

Using Indus as a foundation, SAnToS researchers have built a program slicer for full Java that provides various
forms of visualization, navigation, and querying of program dependence information. This suite of capabilities is
called program slicing because it enables developers to selectively view different cuts or slices of a program that
consists of program statements that depend on or influence the slice criterion - a set of program points of particular
interest. For example, given a failing assertion statement as a slice criterion, a backward slice will find all program
statements upon which the given assertion depends (either through transitive data or control dependences). Indus
can also produce program chops – all paths of dependence between two different program statements.

Kaveri is a subproject of Indus that delivers the above slicer as a plugin in IBM’s open source Eclipse integrated
development environment. Using Kaveri, a developer can perform a variety of queries, slices, and chops on
program dependence graphs and visualize and navigate the results in a Java editor in Eclipse.

This dependence produced by Indus/Kaveri can be leveraged in a variety of ways:

• Quick fault isolation in debugging. Given a particular Java statement(s) that may be suspected of a fault,
a graphical user interface and flexible query language allows users to easily visualize and navigate through
program statements that depend on or are influenced by those statements.
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• Security analysis of information flow properties. In essence, the dependence information calculated by our
tools describes paths along which data can flow in a system. We are currently working toward a security tool
built on top of this framework that would enable one to detect, e.g., flows of high-security information into
low-security contexts. This type of reasoning is necessary to achieve the partitioning called for in multi-level
security architectures.

• Traceability calculations needed for certification. Certification often requires one to trace code to particular
requirements, code to dependent code, etc., and these calculations are often very tedious to perform. The
dependence analyses that we have developed seem particularly well-suited for supporting that effort. In
particular, we are developing ways in which dependence information from Java code is lifted to the modeling
level in Cadena – allowing traceability and other certification activities to be organized and directed at the
model level.

• Program specialization and program sub-setting: The Indus slicer can be used to obtain specialized versions
of a given program by generating a new version of the original program that contains only classes, methods,
and program statements that are necessary to carry out the computation at a select set program elements.
This program sub-setting effect is useful for reducing the footprint of deployed systems when the complete
functionality of the original system is not required.

While several program slicers exist for C, Indus/Kaveri is currently the only available slicer for Java. Thus,
it offers Java developers unique capabilities that can enhance system construction in a variety of ways. We are
currently extending Indus/Kaveri to RT-Java and to EJB/J2EE applications where dependences could be chased
across distributed connections.

Indus has been downloaded over 1500 times since March 2004, and is being used in companies such as NEC,
Fujitsu, MITRE, and IBM Japan.

7.4 Specialization Patterns Catalog

As part of our investigation into strategies for adapting general purpose middleware into implementation dedicated
to and optimized for specific embedded platforms, our subcontractors at Rockwell Collins Advanced Technology
Center have compiled extensive documentation on how to specialize middleware software through the use of
semi-automated source code transformation strategies. Specifically, thePCES Specialization Patterns Catalogis a
300+ page compilation of patterns related to the specialization of middleware that is intended to validate the basic
premise that significant improvements in performance, reductions in footprint, and other simplifications of platform
software can be achieved by auomatically specializing this software based on knowledge of the application or
applications that use it. In essence, knowledge of the application is captured in a model and used to drive a
specialization toolset to produce a version of the platform software that is optimized for its intended use. The
types of transformation performed by the toolset are formally defined as domain specific ’patterns’, allowing the
specialization process to be adapted to many domains, and in ways specified directly by the user community.

The types of applications used to illustrate the approach are distributed, real-time and embedded (e.g., a simple
Avionics display system). The type of platform software to be specialized is distributed middleware (i.e., CORBA).
The patterns are written in a style similar to that for classic OO design patterns, but with sufficient rigor to allow
them to be automated, and with the goal of specializing otherwise general purpose software with respect to some
set of properties. Specific patterns are intended to optimize particular properties (e.g., we may have different sets
of patterns related to performance, footprint, reliability, safety, etc.). Some of the patterns are also general (apply
to nearly all software), while others are domain specific (e.g., assume a knowledge of CORBA).

The patterns in this catalog are intended to be automated using a combination of slicing, refactoring, partial
evaluation, and aspects. The catalog includes not only patterns that directly apply these technologies, but other
forms of refactoring intended to enable their use (e.g., refactoring the code in a particular way may make it easier
to apply another pattern that uses partial evaluation). These concepts are integrated with those of aspect-oriented
programming (AOP), which are commonly used to introduce new classes, methods, and ’around advice’.
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